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Abstract

SARS-CoV-2 superspreading occurs when transmission is highly efficient and/or an individual
infects many others, contributing to rapid spread. To better quantify heterogeneity in SARS-
CoV-2 transmission, particularly superspreading, we performed a systematic review of trans-
mission events with data on secondary attack rates or contact tracing of individual index cases
published before September 2021 prior to the emergence of variants of concern and widespread
vaccination. We reviewed 592 distinct events and 9,883 index cases from 491 papers. A meta-
analysis of secondary attack rates identified substantial heterogeneity across 12 chosen event
types/settings, with the highest transmission (25–35%) in co-living situations including house-
holds, nursing homes, and other congregate housing. Among index cases, 67% reported zero
secondary cases and only 3% (287) infected >5 secondary cases (“superspreaders”). Index case
demographic data were limited, with only 55% of individuals reporting age, sex, symptoms, real-
time polymerase chain reaction (PCR) cycle threshold values, or total contacts. With the data
available, we identified a higher percentage of superspreaders among symptomatic individuals,
individuals aged 49–64 years, and individuals with over 100 total contacts. Addressing gaps in
the literature regarding transmission events and contact tracing is needed to properly explain the
heterogeneity in transmission and facilitate control efforts for SARS-CoV-2 and other infections.

Introduction

Following the emergence of SARS-CoV-2 in 2019, the virus spread worldwide, resulting in the
coronavirus disease (COVID-19) pandemic [1]. Understanding the drivers of SARS-CoV-2
transmission was crucial for formulating control measures, especially prior to the development
of vaccines. Heterogeneity in transmission, particularly superspreading, was investigated early on
because of its ability to cause large outbreaks [2–4]. Superspreading involves two distinct but non-
mutually exclusive phenomena: a setting where many people become infected due to an
environment conducive to transmission (e.g., crowded indoor settings) and individuals who
are outliers in the number of secondary cases they infect due to high-risk behaviours and/or
biological heterogeneity in infectiousness [5, 6]. Superspreading has been observed in several
other viral infections, including SARS-CoV,MERS-CoV,Nipah, Ebola, andmeasles [7–12].With
SARS-CoV-2, both forms of superspreading garnered considerable attention in the literature. For
example, over 140 individuals were infected during a Christmas event in Belgium in December
2020, causing over 26 deaths [13]. Likewise, one individual infected dozens of people during a
choir practice in Washington, USA, in March 2020 [14].

Because superspreading events contributed substantially to local and global SARS-CoV-2
transmission [15], public health interventions were enacted to reduce their risk of occurrence.
These interventions included school closures, limitations on indoor gatherings, and restrictions
on visiting hospitalized patients or long-term care facilities. Many of these policies were based on
limited data from the early stages of the pandemic.Moreover, published reviews andmodelling of
SARS-CoV-2 superspreading from this period were limited in scope and did little to disaggregate
this phenomenon into distinct contributions of environment and individual characteristics. For
example, studies of setting-specific transmission rates have focussed on household and health-
care transmission or geographic and temporal trends [2, 16–19] but did not address transmission
heterogeneity across other social settings. Previous meta-analyses of individual-level super-
spreading included only a small number of papers (<26) that calculated overdispersion in
transmission, missing the majority of published transmission trees and capturing data primarily
from Asia [7, 8]. Early investigations of individual-level characteristics related to superspreading
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were also limited by incomplete contact tracing [20, 21] and a focus
on clinical over demographic characteristics [20]. Amore complete
summary of superspreading is needed to understand the scale of
transmission heterogeneity across settings and identify causes of
individual heterogeneity.

The objective of this review was to summarize global hetero-
geneity in SARS-CoV-2 transmission events prior to widespread
vaccination and the role of environmental and individual factors in
superspreading. Specifically, this review aimed to identify 1) the
amount of variation in attack rates across studies and events, 2)
which settings had the highest attack rates, 3) the individual off-
spring distribution for SARS-CoV-2, and 4) the characteristics of
superspreading individuals.

Methods

Literature search and data extraction

We conducted this systematic review and meta-analysis according
to the Preferred Reporting Items for Systematic Reviews andMeta-
Analyses 2020 statement [22]; see Appendix 1 for the PRISMA
checklist. We included all studies of SARS-CoV-2 in humans that
contained data on 1) transmission chains; 2) numbers of index
cases, contacts, and infected contacts; 3) numbers of index cases
and infected contacts; or 4) secondary attack rates. A clinical
informationist searched PubMed, the WHO COVID database,
the I Love Evidence COVID database, and Embase on 9 September
2021. No restrictions on language or start date were applied. Results
were imported into EndNote X9 (Clarivate, London, UK) where
duplicates were removed. Team members screened titles and
abstracts and performed full-text review in Covidence (Veritas
Health Innovation, Melbourne, Australia).

We extracted data using a pre-designed, study-specific spread-
sheet, collecting information on paper metadata and target vari-
ables for two outcomes: transmission events and individual index
cases (Table 1). Events were defined as discrete transmission set-
tings where secondary attack rates for defined groups of people
could be calculated as the number of infected cases divided by the
number of exposed individuals. This definition of secondary attack
rates includes both clinical and subclinical infections in some
studies. Due to limited details published in the literature, we did
not attempt to distinguish events associated with individual trans-
mission chains from a single source (potentially with sequencing
data) from events that aggregated multiple transmission chains
together. In lieu of this distinction, we separated events into differ-
ent settings and by duration of event (i.e., exposure window, in
days) reported in each paper. Twelve event types were chosen to
classify each event/setting described in a paper (Table 2). To
describe individual contributions to transmission, we extracted
data on index cases for whom contacts were followed to identify
secondary transmission. We only entered data from papers where
the methods were clear that contact tracing was done for at least
1 week to capture secondary transmission from index cases. For
studies that did not report SARS-CoV-2 variants, we imputed the
dominant variant from CoVariants data for the country and time
period of interest [23]. See the Supplementary Material for add-
itional details on the identification of papers, data extraction
(Supplementary Tables S2 and S3), and bias assessment.

Statistical analyses

To characterize the type and quality of information that we were
able to extract about transmission events, we performed a

descriptive analysis of event data including the number of each
chosen event type, starting year of the data, focal countries, diag-
nostic methods, event duration, and level of missingness for all
variables. Because not all individuals potentially exposed during an
event were tested in each study, secondary attack rates for individ-
ual events were calculated separately using the number of exposed
individuals or the number tested. If either of these quantities were
missing, the value was imputed based on the value present
(i.e., assuming the number tested was equal to the number exposed
or vice versa). The sensitivity of results to this choice of denomin-
ator was assessed in the meta-analysis of events (see the
Supplementary Material).

To describe the amount of variation in attack rates across studies
and events and to identify which settings had the highest SARS-
CoV-2 attack rates, a meta-analysis was performed on secondary
attack rates across event types using themetafor package in R v4.2.2
[24]. We converted secondary attack rates for each event to
Freeman-Tukey double arcsine transformed proportions [25] and
calculated the sampling variance.We fit a hierarchical model with a
nested random effect for events within the study and no fixed effects
to assess the heterogeneity in secondary attack rates attributable to
these factors using restricted maximum likelihood. We calculated
I2, the percentage of variance attributable to true heterogeneity, for
each random effect [26] and used Cochran’s Q test to test if the
estimated heterogeneity in secondary attack rates was greater than
expected from the sampling error alone. We then fit additional
mixed-effects models that included the same random effects, along
with event type and event duration as fixed effects. Cochran’sQwas
performed on thesemodels to assess whether residual heterogeneity
in secondary attack rates was greater than expected after accounting
for sampling error and fixed effects. Fitted coefficients and 95%
confidence intervals (CIs) from meta-analyses were back-
transformed to proportions using the geometric mean of the tested

Table 1. Description of variables extracted from papers in the systematic
review of SARS-CoV-2 superspreading from December 2019 to July 2021

All papers • Title
• Author(s)
• Publication year, volume, and issue
• Journal
• Study location(s)
� Country
� Administrative unit(s): state/province, county, city

• General study time period (e.g., start and end year/month of
data collection)

• Diagnostic testing method (PCR, serology, rapid antigen
tests, symptom diagnosis, or mixed)

• Variant name
• Any reported prevention measures implemented in the
event (e.g., masking, social distancing)

• Number of exposed people with reported demographic
characteristics (age, sex) and vaccination status

Events • Type of event/setting (e.g., nursing home residents, house-
hold transmission study, or school)

• Start and end date of event

Index case • Demographic characteristics (age, sex, occupation)
� Age group: ≤4 years, 5–12 years, 13–18 years, 19–24 years,

25–48 years, 49–64 years, ≥65 years
• Symptom onset (if applicable) and diagnosis dates
• Symptoms (text descriptions or presence/absence)
• Real-time PCR cycle threshold (Ct) value
• Specimen type
• Clinical outcome (if applicable)
• Setting of contact (e.g., work, social, and school)
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individuals across all studies in each event type [25]. These back-
transformed proportions are referred to as “meta-analysis esti-
mated secondary attack rates” or “meta-analysis estimated mean
attack rates” in the text and figures. For comparison with meta-
analysis estimates, we also calculated the median secondary attack
rate and interquartile range across events for each chosen
event type.

To characterize the individual offspring distribution for
SARS-CoV-2, the overall distribution of secondary cases gener-
ated by each identified index case was fit to a negative binomial
distribution, following Lloyd-Smith et al. [11]. This distribution
has two parameters, the mean number of secondary cases and the
dispersion parameter k that controls the heterogeneity in sec-
ondary cases around the mean. A smaller k means more hetero-
geneity. We also estimated the percentile of index cases
producing 80% of all secondary infections using a formula and
code from Endo et al. [27].

Lastly, we aimed to identify the characteristics of superspreading
individuals. Based on the availability of demographic characteris-
tics and other features of index cases in the literature, we examined
differences in distributions of secondary cases reported for index
cases according to sex, presence/absence of symptoms, age, real-
time PCR cycle threshold (Ct) value, and the number of contacts
each index case had. Additional statistical tests compared these
listed factors between “superspreaders” (index cases with >5 sec-
ondary cases, following Adam et al. [3]) and “non-superspreaders”
(≤5 secondary cases): Chi-square tests to compare the proportion of
women, the proportion of symptomatic cases, and proportion of
adults or across age bins; Student’s t-tests to compare mean age and
Ct value; and a Kruskal-Wallis test to compare the highly skewed
distributions of total contacts among index cases. All statistical tests
used α = 0.05 as the statistical significance threshold to identify
whether superspreaders were overrepresented among certain
demographic groups.

Results

Study selection

We identified 13,632 articles from the four databases searched,
representing 8,339 unique references (Figure 1). Of these, we
excluded 7,358 records during the abstract review. For the 981 rec-
ords that underwent full-text review, we excluded 384 records that
were reviews or letters to the editor, contained no data on our
variables of interest, or were duplicate records (preprints, true
duplicates, or duplicated datasets). A total of 598 papers were
assessed for eligibility for data extraction, and a further 107 papers
were excluded that contained insufficient data on our outcomes of
interest or were duplicates (Figure 1). We extracted data from
491 studies: 232 studies provided event data only, 195 studies
provided index case data only, and 64 studies provided both data
types, yielding 592 distinct events and 9,883 index cases. The
491 analysed studies were from 67 countries, with most from
China (26%), the United States (17%), and South Korea (5%)
(Supplementary Figure S1A). Although our search included most
of 2021, nearly all data were from 2020 (94% of events, 99% of index
case symptom onset or positive test dates).

Characteristics of events

Descriptive analyses were used to characterize the type and quality
of information about transmission events present in the literature.
Event data were mostly from the United States (27%), China (15%),
the United Kingdom (8%), and South Korea (6%) (Supplementary
Figure S1B). Published papers lacked information on many vari-
ables that we aimed to extract about events (Supplementary Figure
S2A). Of the 46 target data fields from articles about events, 17 had
high data completeness (>80%), including those for study and event
metadata, event description, time period of event (describing start
and end dates of exposure), event location (country and state/

Table 2. Types of SARS-CoV-2 secondary transmission events occurring between December 2019 and August 2021 reported in the literature

Event type Description of outbreak location N
Minimum and maximum
secondary attack rate

1 Cruise ship or other densely populated watercraft (e.g., fishing vessel, aircraft carrier) 16 0.02, 1

2 Transport mode other than ships (e.g., airplane, train, car) 20 0, 0.4

3 Households, defined as co-living individuals or close contacts who always meet each other
but possibly not living together (e.g., couples in romantic relationship)

115 0, 1

4 Hospital or healthcare facility, including patients, healthcare workers, and nursing home
workers (if worker data were provided separately from nursing home residents)

89 0, 0.46

5 Workplace (e.g., office), including correctional officers and teachers and staff at schools 51 0, 0.86

6 School (data on students only) 32 0, 0.54

7 Public social venue (e.g., bar, concert, sporting event) 39 0, 1

8 Private social event with members of multiple households (e.g., dinner with neighbours or
extended family)

12 0.01, 0.81

9 Shopping (activities in shops, markets, and department stores) 2 0, 0

10 Nursing home or long-term care facility (residents only or residents and healthcare workers if not described
separately in the paper)

41 0, 0.84

11 Congregate housing other than nursing home or long-term care facility (e.g., homeless shelter, prison,
summer camp)

84 0, 1

12 Mixed locations, included any combination of the above but not described separately in the paper 91 0, 1

Heterogeneity across event types was assessed based on the variance and interquartile range of secondary attack rates. Outlier events were identified for each event type as events that exceeded
the estimated upper confidence interval of the meta-analysis estimated SAR for that event type or were greater than 50%.
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province or city), and number of exposed individuals and second-
ary cases (Supplementary Table S3). Event durations were
highly skewed, with a median duration of 34 days and an
interquartile range of 13–60 days (Supplementary Figure S3).
Studies used a variety of diagnostic methods to identify SARS-
CoV-2 cases, though PCR was the dominant method
(Supplementary Figure S4A). Other approaches included anti-
gen tests, retrospective case identification by serology, diagnosis
via symptoms or chest tomography, or a mixture of approaches.
Because most studies covered events prior to the emergence of
variants, most events (N = 532, 90%) likely involved only wild-
type/ancestral SARS-CoV-2, while 14 events involved Alpha,
six Beta, eight Delta, and 31 likely included a mixture of
variants (e.g., during periods of variant emergence and replace-
ment of the dominant variant).

Heterogeneity in event secondary attack rates

Meta-analysis of secondary attack rates was performed to describe
variation in attack rates across studies and events and to rank
settings by the highest attack rates. Secondary attack rates varied
substantially within and among event types (Figure 2). Interquartile

ranges of attack rates were lower for transport (0–11%), hospital/
healthcare (1–20%), and mixed events (3–12%), whereas congre-
gate housing (9–63%), households (15–60%), social venues (8–
53%), and cruise ships (9–41%) had higher heterogeneity, with
some events reporting attack rates of 100% (Table 2). Meta-analysis
of secondary attack rates including a nested random effect for
events within the study detected significant heterogeneity in sec-
ondary attack rates (I2 = 99%, Cochran’s QE,591 = 141,765,
P < 0.0001). The random effect in the study accounted for most
of the heterogeneity (I2study = 58%), followed by event nested within
the study (I2event = 41%). Addition of a fixed effect for event type
indicated that secondary attack rates varied significantly across
event types (Cochran’s QM,11 = 122, P < 0.0001). Meta-analysis
estimated mean attack rates were lowest for shopping (0%), hos-
pitals and healthcare (6%), transportation other than cruise ships
(9%), and schools (11%) (Figure 2). Comparatively, estimatedmean
attack rates were 2–3 times higher (25–35%) in nursing homes,
cruise ships, households, and other congregate housing settings
(e.g., homeless shelters and prisons). Models including event dur-
ation and an interaction term between event type and event dur-
ation as additional fixed effects found similar levels of heterogeneity
(Cochran’sQM,23 = 135, P < 0.0001) and identified a common trend

Figure 1. PRISMA flow diagram for the systematic review andmeta-analysis of SARS-CoV-2 superspreading reported in the published literature. *There were four types of data that
we sought to include: 1) transmission chain; 2) number of index cases, number of contacts, and number of infected contacts; 3) number of index cases and number of infected
contacts; or 4) secondary attack rate. **Languages other than Spanish, Chinese, French, Turkish, German, and Portuguese.
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of decreasing attack rates with longer event durations across dif-
ferent event types, except for cruise ships and shopping
(Supplementary Figure S5).

Characteristics of individual index cases

Descriptive analyses were also used to characterize the type and
quality of information about index cases found in published
studies. Index case data with offspring distributions overwhelm-
ingly came from China (36%) and India (35%) (Supplementary
Figure S1C). Index case data exhibited higher missingness com-
pared to events (Supplementary Figure S2B): of the 74 data fields
extracted for index cases, the highest completeness (>60%) was
seen for study and index case numbers, location (country and
state/province or city), number of contacts infected, method of
testing for the index case and contacts, and SARS-CoV-2 variant
(Supplementary Table S4). We identified five key characteristics
of index cases that could be related to superspreading, though
most of these were also missing from studies: 46% of cases
included data on age, 48% on sex, 10% on presence/absence of
symptoms, 6% on number of contacts, and only 2% had Ct values
reported. A total of 5,437 index cases (55%) contained data on at
least one of these five variables. Diagnostic methods for the

identification of index cases and their associated secondary cases
were only reported in 61% of cases, with PCR as the primary
approach (Supplementary Figure S4B,C). Most index cases
(N = 8,565, 87%) were assumed to be infected with wild-type
SARS-CoV-2 based on the location and timing of the study or test
confirmation date. A mixture of variants was likely in 1,282 cases
(13%), while one index case was reported with Alpha, two Beta,
11 Delta, and 22 Epsilon.

Heterogeneity in transmission across individual index cases

A third goal of this analysis was to describe the offspring distri-
bution for SARS-CoV-2 based on reported index cases.Most index
cases (67%) did not transmit SARS-CoV-2 to another person and
17% transmitted to only one other individual (Figure 3). There
were 287 “superspreaders” with >5 contacts infected, representing
3% of index cases. The distribution of secondary infections fit a
negative binomial distribution with a mean of 0.88 (CI: 0.84–0.92)
and a dispersion parameter k of 0.27 (CI: 0.25–0.28). Using
the formula from Endo et al. [27] and the estimated mean and k
for the negative binomial distribution, the top 17%most infectious
index cases would be expected to generate 80% of all secondary
cases.

Figure 2. SARS-CoV-2 secondary attack rates across 12 event types occurring betweenDecember 2019 and August 2021 reported in the literature across 592 events from296 studies.
Individual event data secondary attack rates are shown as grey bubbles, varying in size according to the total number of individuals exposed and tested from the event. Median
secondary attack rate for each event type is shown as red circle with a line representing the interquartile range; values are in red on the right side of the figure. Meta-analysis
estimated secondary attack rate for each event type is shown as an orange diamondwith a line representing the estimated 95% confidence interval; values are in orange on the right
side of the figure. Event types were ranked by increasing estimated mean secondary attack rate along the left axis.
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Qualities of superspreaders

Finally, our analysis sought to identify qualities of index cases that
were associated with being a superspreader (with >5 secondary
cases) compared to non-superspreaders (Table 3). The proportion
of index cases with reported symptoms was higher in supersprea-
ders (89%) than non-superspreaders (76%; χ21 = 5.4, P = 0.02).
Superspreaders had more than two times the mean number of
contacts (79) compared to non-superspreaders (36; χ21 = 56.6,
P < 0.0001). Adults also made up a greater proportion of super-
spreaders (99%) than non-superspreaders (84%; χ21 = 14.1,
P < 0.0001). Index cases over 25 years of age were overrepresented
among superspreaders, and no superspreaders aged 12 years and
under were reported (Figure 4). When age was analysed as a
continuous variable, the number of contacts infected and the
frequency of superspreaders increased with age, up to around
60 years of age (Supplementary Figure S6). No significant differ-
ences by sex or Ct values were observed (Table 3). However, two
adult male index cases had the highest number of secondary
infections, infecting 81/104 contacts and 101/300 contacts, respect-
ively. The former was a lecturer in Tonghua, China [28], and the
latter a fitness instructor in Hong Kong, China [29].

Symptomatic cases had a higher mean number of infected
contacts (2.1) compared to asymptomatic cases (0.7) (Table 4).
The dispersion parameter k was higher for symptomatic cases than
asymptomatic cases (0.43 vs. 0.11), indicating a lower variance in
the number of secondary cases reported for a symptomatic case.
This variance is exemplified by the lower percentage of non-

transmitters (44%) and higher percentage of superspreaders (9%)
among symptomatic cases compared to asymptomatic cases (79%
and 4%, respectively). Compared to other age groups, individuals
aged 49–64 years had the highest mean number of infected contacts
(1.2), lower variance (higher k, 0.43), and a higher percentage of
superspreaders (3%). Patterns for total reported contacts were
different, with a higher mean number of infected contacts (8) as
well as higher variance (lower k, 0.28) among index cases with >100
contacts compared to individuals with fewer contacts. This was
accompanied by a higher percentage of superspreaders (28%)
among individuals with >100 contacts compared to individuals
with 11–100 contacts (19%) or those with 0–10 contacts (2%).
Considering only symptomatic adults with a known number of
contacts (N = 129), the percentage of superspreaders was consist-
ently smaller as the number of contacts decreased: 26% (5/19) for
individuals with over 100 contacts, 24% (8/34) for those with 21–
100 contacts, 8% (2/24) for those with 11–20 contacts, and 0% for
those with 10 or fewer contacts (0/52).

Discussion

In this study, we aimed to characterize the heterogeneity in SARS-
CoV-2 transmission among different settings and across individ-
uals reported in the literature. Regarding transmission settings, our
meta-analysis identified substantial heterogeneity in attack rates
across 12 chosen event types, with higher mean attack rates in
nursing homes, cruise ships, households, and other congregate

Figure 3. Distribution of secondary contacts infected by individual index cases (N = 9,591) for SARS-CoV-2 cases occurring between December 2019 and July 2021 reported in 259
studies. The black line shows the fit of the distribution to the expected negative binomial distribution. The inset shows a portion of the same data to highlight the distribution of
superspreaders (index cases with >5 secondary cases).
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housing settings compared to shopping, hospitals and healthcare,
other transportation, and schools. Regarding individual transmis-
sion heterogeneity, our results indicate substantial heterogeneity in
transmission from individuals, as observed in other studies [30–32]
and evidenced by the skewed degree distribution for index cases
and the estimate of the dispersion parameter k. Our estimate of k
(0.27, CI: 0.25–0.28) is within the range of previous estimates for a

similar period of the pandemic, with values frequently in the range
of 0.1–0.7 [3,7,8,27,33]. We found that most cases did not transmit
to another person and a small proportion (3%) of individuals were
superspreaders (with >5 secondary cases). While data on the
demographics of index cases were not consistently reported, the
data that were available indicate that superspreaders were more
likely to be symptomatic than non-superspreaders, more likely to

Table 3. Statistical comparisons of SARS-CoV-2 superspreaders to non-superspreaders based on features reported in the literature in 259 studies for cases
occurring between December 2019 and July 2021

Feature of comparison
Percentage or estimated mean for
non-superspreaders (total observations)

Percentage or estimated mean
for superspreaders (total observations) Statistical test results

Female 40% (N = 4,543) 38% (N = 102) χ21 = 0.09, P = 0.76

Presence of symptoms (symptomatic) 76% (N = 841) 89% (N = 70) χ21 = 5.4, P = 0.02

Age (in bins) (N = 4,391) (N = 91) χ26 = 21.7, P = 0.001

≤4 years 3% 0%

5–12 years 7% 0%

13–18 years 8% 2%

19–24 years 11% 9%

25–48 years 49% 53%

49–64 years 16% 27%

≥65 years 6% 9%

Age (≥18 years) 84% (N = 4,391) 99% (N = 91) χ21 = 14.1, P < 0.0001

Age (in years) 34.8 (N = 4,391) 43.8 (N = 91) t94.4 = 5.2, P < 0.0001

Ct value 26.7 (N = 140) 24.8 (N = 10) t10.1 = �0.8, P = 0.45

Total contacts 36 (N = 471) 79 (N = 59) χ21 = 56.6, P < 0.0001

Figure 4. Comparison of the age distribution of superspreading index cases. The bars show the percentage of individuals within an age bin across superspreaders (index cases with
>5 secondary cases) and non-superspreaders. Numbers above the bars display the raw totals and percentages are shown in Table 3.
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be adults (with overrepresentation in the 49–64 age group), and had
more contacts.

Our ranking of event types by attack rate reinforces our existing
understanding of SARS-CoV-2 that transmission is more likely in
dense indoor gatherings or close and frequent contact among
co-living individuals, especially in households [15]. Published
meta-analyses covering the early pandemic (pre-2021) estimated
pooled household secondary attack rates of 17–21% [16, 18, 19, 34,
35], with household attack rates consistently higher than those in
healthcare, work, or travel settings [16, 19]. Our pooled household
secondary attack rate over 115 events was 29%, higher than these
earlier studies but similar to the 31% estimate fromMadewell et al.
[18] for studies covering July 2020 toMarch 2021. The higher value
may be explained by the emergence of the Alpha and Delta variants
and the larger second and third waves of the pandemic occurring in
some countries during 2021.

The literature on SARS-CoV-2 transmission events rarely
reported on the epidemiological context and characteristics of
different populations exposed, which could help explain variation
in attack rates. While the timing and location of events may help to
explain some variation within event types, the remaining variation
could depend on event duration (as shown by Supplementary
Figure S5) and time spent indoors, types of activities occurring
(e.g., exercise, singing) [36, 37], and the age groups present at the
event. For example, the age of individuals interacting in these
contexts appears to also influence propensity for transmission, as
evidenced by the large difference in attack rates within schools
versus nursing homes. Children and adolescents are frequently

found to have lower household infection risk than working-age
adults [18, 19, 21, 35] and older adults have a higher risk of infection
and severe disease than younger ages [18, 35]. In studies that
assessed transmission among school-age children, teachers, and
their household contacts, attack rates among children at school
were lower than among teachers and the household contacts of
children and teachers [38, 39]. Variation in the stringency of
interventions (e.g., masking requirements, physical distancing,
and lockdowns) across countries and over time also could have
affected attack rates across settings. As shown in Supplementary
Figure S6 comparing attack rates for events in the United States and
China, two locations with differing levels of implemented control
measures, a meta-analysis estimated attack rates were lower across
event types for China, though the largest differences between
countries were observed for transmission in social venues and
mixed settings. Environmental factors such as humidity, room size,
ventilation, and air flow [5] could also augment transmission across
settings, but these were absent in the literature.

Analysis of index case demographics also highlighted age as an
important factor in SARS-CoV-2 superspreading. While age was
only reported in 46% of index cases, nearly all superspreading
individuals were adults and there were no reported superspreaders
12 years of age and under, consistent with other reviews [40]. Indi-
vidual and age-related heterogeneity in the amount and assortative
patterns of social contacts likely influence superspreading as well.
Evidence supports lower transmission from children compared to
adults [16, 21, 31, 34]. Remaining heterogeneity in individual
infectiousness may derive from differences in genetic susceptibility

Table 4. Summary statistics describing the distribution of secondary cases among individual SARS-CoV-2 index cases occurring between December 2019 and July
2021 reported in the literature across 259 studies

Data Sample size

Percentage
with 0 contacts

infected

Percentage with
1–5 contacts
infected

Percentage with >5
contacts infected

Maximum
contacts
infected

Estimated mean
contacts infected

(95% CI)

Estimated
overdispersion,

k (95% CI)

All rows 9,591 67% 30% 3% 101 0.88 (0.84–0.92) 0.27 (0.25–0.28)

Female 1,866 75% 22% 2% 30 0.63 (0.56–0.71) 0.18 (0.16–0.21)

Male 2,779 74% 24% 2% 101 0.76 (0.69–0.84) 0.17 (0.15–0.19)

Asymptomatic 214 79% 17% 4% 25 0.75 (0.43–1.08) 0.11 (0.07–0.16)

Symptomatic 697 44% 47% 9% 81 2.06 (1.8–2.3) 0.43 (0.36–0.49)

Age ≤4 years 143 90% 10% 0% 3 0.2 (0.07–0.32) 0.09 (0.01–0.17)

Age 5–12 years 318 97% 3% 0% 3 0.04 (0.006–0.07) 0.03 (–0.006–0.06)

Age 13–18 years 333 94% 6% 1% 26 0.23 (0.08–0.38) 0.03 (0.01–0.05)

Age 19–24 years 482 88% 10% 2% 19 0.38 (0.23–0.52) 0.06 (0.04–0.09)

Age 25–48 years 2,195 76% 22% 2% 101 0.73 (0.65–0.82) 0.15 (0.13–0.17)

Age 49–64 years 727 54% 43% 3% 35 1.16 (1.01–1.31) 0.43 (0.36–0.51)

Age ≥65 years 284 58% 39% 3% 18 1 (0.79–1.21) 0.43 (0.3–0.57)

Ct value ≤25 67 42% 52% 6% 12 1.48 (1–1.96) 0.86 (0.31–1.42)

Ct value >25 83 52% 41% 7% 26 1.45 (0.87–2.02) 0.4 (0.2–0.6)

0–10 total
contacts

281 49% 48% 2% 9 1.12 (0.93–1.31) 0.83 (0.53–1.14)

11–100 total
contacts

195 47% 34% 19% 39 3.1 (2.29–3.91) 0.32 (0.23–0.41)

101–1,000 total
contacts

54 35% 37% 28% 101 8 (3.92–12.07) 0.28 (0.16–0.4)
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[41, 42], body size (accounting for age) [43], baseline lung volume
and function [32], immunocompromising disease or co-infection
[44, 45], or the loudness and wetness of speech [36]. The relative
importance of these characteristics to SARS-CoV-2 transmission at
a population level is unknown and may be challenging to measure
and report at scale. Futurework onCOVID-19 andother respiratory
diseases should address these hypotheses.

While our systematic review is the most comprehensive assess-
ment of SARS-CoV-2 superspreading to date, a principal limitation
of our analysis was the incomplete data available in the published
studies. Beyond information provided about event timing and
location, very few studies reported any demographics of the
exposed individuals, their COVID-19 vaccination status (once
introduced), history of prior SARS-CoV-2 infection, or the density
and amount of time indoors. For index cases, some studies reported
demographic information and the presence/absence of symptoms,
but this was atypical.We also had trouble deducing whether contact
tracing was performed for all reported cases in transmission chains,
especially for terminal nodes. It was not always clear whether cases
did not transmit or whether data weremissing due to lack of contact
tracing, so these cases had to be omitted from the analysis. Testing
and tracing policies differed between countries, which affected the
collection of index cases that ended up in our review. For this
reason, data on index cases are missing from many countries and
transmission chains from some countries may be less complete
than others. Similarly, the effectiveness of testing and tracing
policies varies across settings (e.g., easier in households than large
social gatherings), which affects the completeness of transmission
chains and likely influences which outbreaks get published. There
were numerous papers that we reviewed with transmission chains
that were simply too incomplete or uncertain for us to extract index
case data from them. However, without reporting of testing and
tracing policies or the effectiveness of tracing efforts within each
paper, or a comprehensive database or systematic review of this
information in the literature, these remain uncertainties that must
be addressed with better data.

Another limitation of this review was the variation in case
detection methods across studies. Not all studies reported the
number of contacts that were tested from events, and we assumed
for missing cases that the number tested was the same as the
number exposed. Our sensitivity analysis, using exposed contacts
for all events as the denominator for attack rates instead of tested
contacts, showed that estimatedmean attack rates were consistently
lower across event types, but the ranking of event types was rela-
tively stable (Supplementary Figure S7). However, case definitions
also varied by study. Some studies reported only symptomatic cases
or only performed diagnostic tests (e.g., PCR) on symptomatic
individuals, thereby missing all reporting of asymptomatic or
symptomatic cases that did not meet the criteria for reporting/
testing, as well as any associated secondary cases. These missing
contacts may be undercounted for both the numerator (contacts
that are infected but asymptomatic) and the denominator
(including contacts that are asymptomatic and uninfected), which
could move attack rates in either direction. Limiting testing to
symptomatic contacts has a more predictable effect on individual
case degree distributions, reducing the apparent proportion of
individuals who transmit and the secondary cases among individ-
uals who do transmit. Case ascertainment also likely varied by event
setting, contributing additional uncertainty in estimated attack
rates. For example, performing contact tracing and testing a greater
number of contacts was probably easier in settings with consistent
or recorded populations like households, schools, and nursing

homes than in large social venues like nightclubs. Differences in
estimated attack rates by event type may be less drastic than we
observed if case ascertainment could be properly addressed with
additional ground truth data, that is, community asymptomatic
testing.

Since case detection depends partly on the presence of symp-
toms, some care should be taken in interpreting the finding that
superspreaders were more likely to have symptoms than non-
superspreaders. We performed an additional analysis on the pres-
ence of symptoms across different demographic factors reported in
papers (see Supplementary Table S6). The only trend we saw was
for age, where the presence of symptoms was somewhat higher for
older adults (49 and older). Thismay have slightly skewed detection
of superspreaders among older adults. However, there were still
hundreds of children with symptoms reviewed as index cases, so
there were ample opportunities for them to be identified as super-
spreaders. Therefore, we remain confident in our findings about the
rarity of superspreaders among children. However, data from
human challenge trials with SARS-CoV-2 have shown that indi-
viduals with the highest viral emissions did not have themost severe
symptoms, but these super-emitters were also not asymptomatic
[32]. These super-emitters, and the majority of superspreaders
reported in the literature, tend to have mild to moderate symptoms
[32, 40]. While the importance of asymptomatic transmission of
SARS-CoV-2 should be acknowledged, numerous studies have
shown that transmission is more likely from symptomatic individ-
uals compared to completely asymptomatic individuals [18, 21, 46–
48]. However, additional studies that overcome issues of case
ascertainment should be done to assess the role of asymptomatic
individuals in SARS-CoV-2 superspreading.

To improve our understanding of the drivers of heterogeneity in
transmission, we propose standard and consistent reporting on
transmission for all outbreaks, as feasible, including details on the
epidemiological context of transmission events and complete line
lists of cases following contact tracing, with information on case
demographics (age, sex, and occupation), diagnosis (presence/
absence of symptoms, symptom description, test date and results),
duration of contact tracing, and number of contacts and demo-
graphic information for contacts (see Appendix 2). Details on the
duration of contact tracing should include the entire period of case
finding and how long cases were followed to detect any secondary
cases.We recognize the challenge of collecting, storing, and sharing
identifiable data from outbreak investigations while continuing to
assure confidentiality and improve trust in the health system.
However, developing such a reporting system should be a priority
for public health as the information has important implications for
reducing the spread of infectious pathogens.

Our comprehensive review found substantial heterogeneity in
transmission of SARS-CoV-2, highlighting the settings and indi-
vidual characteristics that might be most important to target for
controlling superspreading. Secondary attack rates were highest in
co-living situations where prolonged contact between individuals
facilitated transmission, though there was substantial variation in
attack rates within similar settings that remained unexplained and
could be disentangled in future meta-analyses focussed on the
relative influence of built environment, social setting, and control
measures on transmission. Given the moderate attack rates among
minors in school and the rarity of children among superspreaders,
interventions targeting these age groups may be less efficient at
preventing SARS-CoV-2 superspreading and could be depriori-
tized in favour of interventions focusing on adults [21, 49], espe-
cially those with symptoms and individuals with many daily close
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contacts. Acknowledging that there remain substantial gaps in data
that limit our inference about superspreading, we advocate for
consistent reporting on infectious disease outbreaks, ideally with
detailed line lists, to facilitate knowledge synthesis about transmis-
sion patterns and superspreading in the future.
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