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Evaluation of FluSight influenza forecasting
in the 2021–22 and 2022–23 seasons with a
new target laboratory-confirmed influenza
hospitalizations

A list of authors and their affiliations appears at the end of the paper

Accurate forecasts can enable more effective public health responses during
seasonal influenza epidemics. For the 2021–22 and 2022–23 influenza seasons,
26 forecasting teams provided national and jurisdiction-specific probabilistic
predictions of weekly confirmed influenza hospital admissions for one-to-four
weeks ahead. Forecast skill is evaluated using the Weighted Interval Score
(WIS), relative WIS, and coverage. Six out of 23 models outperform the base-
line model across forecast weeks and locations in 2021–22 and 12 out of 18
models in 2022–23. Averaging across all forecast targets, the FluSight
ensemble is the 2nd most accurate model measured byWIS in 2021–22 and the
5th most accurate in the 2022–23 season. Forecast skill and 95% coverage for
the FluSight ensemble and most component models degrade over longer
forecast horizons. In this work we demonstrate that while the FluSight
ensemble was a robust predictor, even ensembles face challenges during
periods of rapid change.

Traditional influenza surveillance systems provide a comprehensive
picture of influenza activity in the United States1–3 and are fundamental
for situational awareness and risk communication. However, they
measure influenza activity after it has occurred, and do not directly
anticipate future trends to inform risk assessment and healthcare
preparedness. To address these limitations, the Centers for Disease
Control and Prevention (CDC) has supported open influenza fore-
casting challenges since the 2013–14 season4. This collaborative pro-
cess (namedFluSight) has ensured that forecasting targets are relevant
to public health. Additionally, forecast data are openly available, which
enables transparent evaluation of forecast performance5,6.

Originally the FluSight collaboration focused on short-term fore-
casts of outpatient influenza-like-illness (ILI) rates from ILINet2 and
corresponding results have been summarized previously4–6. However,
the COVID-19 pandemic resulted in changes in outpatient care-seeking
behavior, and the continued co-circulation of SARS-CoV-2 has further
complicated the interpretation of ILI data. In the 2021–22 influenza
season, the FluSight forecast target shifted to the weekly number of

hospital patients admitted with laboratory-confirmed influenza from
the Health and Human Services (HHS) Patient Impact and Hospital
Capacity Data System7. This system was created during the COVID-19
pandemic to gather a complete and unified representation of COVID-
19 disease outcomes along with other metrics related to healthcare
capacity. Hospitals registered with the Centers for Medicare and
Medicaid Services (CMS) are required to report daily COVID-19 and
influenza information8. Reporting of the influenza data elements,
including the previous day’s number of admissions with laboratory-
confirmed influenza virus infection, becamemandatory on February 2,
2022,8. Although influenza activity, has been monitored throughout
the US for decades throughmultiple surveillance systems, this dataset
is the first with laboratory-confirmed influenza hospital admissions
reported systematically across all 50 states and additional
territories1–3,8.

The COVID-19 pandemic disrupted the typical timing, intensity,
and duration of seasonal influenza activity in the United States and
many parts of the world9,10. Influenza activity was very low during the
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2020–21 season in the U.S., but activity increased during the
2021–22 season, with activity peaking later in April, May, and early June
2022 and remaining at higher levels than had been reported during
these months in previous seasons10. In the 2022-23 influenza season,
activity began increasing nationally in early October, earlier than pre-
vious seasons2,3,11, and peaked in early December 2022.

In this analysis, we summarize the accuracy and reliability of
ensemble and component 1- to 4-week ahead forecasts of laboratory-
confirmed influenza hospital admissions submitted in real-time during
the 2021–22 and 2022-23 seasons. Our objective was to consider
potential changes in performance of these forecasts in post-COVID
influenza seasons, especially given atypical timing and intensity. By
evaluating forecast performance for a new forecast target with limited
calibration data, we identify specific areas for forecast improvement.

Results
The 2021–22 influenza season was characterized by two distinct waves
of activity. The first occurred between November 2021 and January
2022 and the second between February and June 2022, though
reporting of influenza hospitalizations was not mandatory in the HHS
system until February 2, 2022 (see observed data in Fig. 1a). Reported
national weekly influenza hospital admissions exceeded 1000 for 22
out of 25 of the forecast weeks (Fig. 1a). Updates toweekly counts from
the forecast evaluation periodwere generallyminimal (Supplementary
Figs. 2–4), with 94% of updates during the 2021–22 season resulting in

changes of under 10 hospitalizations for subnational jurisdictions.
There were infrequent larger updates (10 or greater) to reported
admissions.

The 2022-23 influenza season was characterized by an early start,
reaching 1000 hospital admissions nationally before October 2022. A
sharp increasenationally throughOctober andNovember led to a peak
of 26,600 hospital admissions in early December. Hospital admissions
decreased rapidly after December, with 3000 weekly hospital admis-
sions by the end of January, and eventually dropped below 1000
confirmed weekly admissions nationally by May 2023. Weekly num-
bers of admissions exceeded 1000 for 27 out of 34 of the forecast
weeks (Fig. 1b, Supplementary Fig. 4). In the 2022–23 season, 83% of
updates for weekly admissions resulted in changes of under 10 hos-
pitalizations for subnational jurisdictions. There were infrequent lar-
ger updates to reported admissions and often updates occurredwithin
two weeks of initial publication.

Models Included
For both the 2021–22 and 2022–23 influenza seasons, 26 modeling
teams submitted forecasts, and 21 and 16, respectively, were eligible
for end-of-season evaluation, not including the FluSight baseline and
ensemble models. The number and types of models included in the
primary analysis (based on the inclusion criteria) varied across weeks
with a range of methodological approaches (see Supplementary
Table 1). For the 2021–22 season, a median of 20 includedmodels was
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Fig. 1 | National incident weekly hospital admissions and select forecasts.
National weekly observed hospitalizations (black points) along with FluSight
ensemble forecasts for four weeks of submissions in the 2021–22 season (a) and
seven weeks of submissions in the 2022-23 season (b). The median FluSight
ensemble forecast values (blue points) are shown with the corresponding 50%,
80%, and 95% prediction intervals (blue shaded regions). c–e Show national

incident weekly hospital admissions (black points) from the 2022-23 sea-
son and predictions from all models submitted on November 11, 2022 (c),
December 05, 2022 (d) and February 27, 2023 (e). Colored bands indicate 95%
prediction intervals for each model. Team forecasts for additional weeks are
available in an interactive dashboard12.
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submitted (range: 15–21), with most having a statistical component,
three mechanistic, and six ensembles of component models. In
2022–23 there was a median of 15 included models (range: 10–16)
submitted eachweek, withmany having a statistical component, three
mechanistic, and four ensemble models. Top performing models in
the 2021–22 season included statistical, mechanistic and ensemble
models. In 2022–23, top performing models included mechanistic,
statistical, ensemble, and one machine learning model. There were
also statistical, mechanistic, AI or machine learning, and ensemble
models among models with lower performance across seasons. Mod-
eling teams varied across seasons, with 13 modeling groups having
submitted eligible forecasts for both seasons. When only national
forecasting targets were considered, no additional teams were inclu-
ded for the 2021–22 season, but two teams, NIH-Flu_ARIMA and
ISU_NiemiLab-Flu, met the inclusion criteria for 2022–23 (Supple-
mentary Analysis 3). Visualizations of all forecasts as of the date they
were submitted are included in an interactive dashboard12.

Relative WIS
Over the evaluation period, more models outperformed the FluSight
baseline model in 2022–23 (12) than in 2021–22 (6) based on relative
WIS (Table 1). Within each season, the models that achieved an overall
relative WIS less than or equal to one represent a variety of modeling
strategies, including a basic quantile autoregression fit, a mechanistic
compartmental model with stochastic simulations, an ensemble of
time-series baseline models, a random walk model, a random forest
ensemble, and the FluSight ensemble (Supplementary Table 1). Similar
results were observed whenmodels were evaluated based on absolute
error of the median of probabilistic forecasts (see MAE estimates in
Table 1).

Few teams outperformed the FluSight Ensemble in relative WIS
for both seasons. The CMU-TimeSeriesmodel was the only model that
outperformed the ensemble for both the 2021–22 and 2022–23 sea-
sons, while the MOBS-GLEAM_FLUH, PSI-DICE, and MIGHTE-Nsemble
models outperformed the ensemble only in the 2022–23 season.

For both seasons, forecasts from the FluSight Ensemble were
ranked among the top 50%of allmodel forecasts for the same location,
date, and target, more than three-fourths of the time (79.73% in
2021–22 and 78.83% in 2022–23) (Fig. 2). Three models consistently
ranked in the top 25% for 2021–22 and 2022–23 seasons, respectively:
CMU-TimeSeries (42.47%, 36.14%), PSI-DICE (39.34%, 39.87%), and
MOBS-GLEAM_FLUH (38.97%, 50.33%). Several models, seven in
2021–22 and five in 2022–23, had bimodal rank distributions, with a
combinedmajority of their forecasts falling in either the bottom25%or
top 25% (Fig. 2).

Log-transformed analysis
For both seasons, the analysis using log-transformed hospitalization
counts resulted in the same top five performing teams in terms of
absolute and relative WIS. For the 2021–22 season, all teams were
ranked the same for the log-transformed and non-transformed ana-
lyses. In 2022–23, MIGHTE-Nsemble and PSI-DICE performed better
than CMU-TimeSeries for the log-transformed analysis (Table 1 and
Supplementary Analysis 2).

Relative WIS and Spatial Variation
Model performance varied by spatial jurisdiction. For individual states,
relative WIS values varied across models ranging from 0.46 to 12.58 in
2021–22 and 0.32 to 12.35 in 2022–23 (Fig. 3). More models, including
the ensemble, performed better at the state-level than the baseline in
2022–23 compared to 2021–22. The relative WIS of the FluSight
Ensemble had the smallest range of values across all locations from
0.58 to 1.08 in 2021–22 to 0.63 to 1 in 2022–23 (Fig. 3 and Supple-
mentary Fig. 1). To further examine forecast performance across jur-
isdictions, we considered the percent of jurisdictions that the relative

WIS value for a givenmodel and locationpairwas less than the baseline
(i.e., lower than 1). The FluSight Ensemble performed as well as or
better than the baseline for all forecast jurisdictions for 2022–23 and
47 out of 52 forecast jurisdictions for 2021–22, a larger number of
jurisdictions than any submittedmodel (Fig. 3). In 2022–23, 12 models
performedbetter than the baseline at the jurisdiction-level at least 50%
of the time, compared to five models in 2021–22. In general, the
models with lower (better) relative WIS values were consistent
between the analysis with all spatial jurisdictions and the analysis
considering only national forecast targets for both seasons (Supple-
mentary Analysis 3).

Absolute WIS
Across forecasted weeks, the FluSight Ensemble’s worst performance
in terms of absolute WIS (maximum values) for 1-week ahead targets
occurred on March 19, 2022 for 2021–22 and on November 26, 2022
for 2022–23 (Fig. 4). For the 4-week aheadhorizon,maximumabsolute
values, indicating the worst performance, for each season occurred on
June04, 2022, andDecember 03, 2022, respectively (Fig. 4).Minimum,
or best, absoluteWIS values for each season occurred on July 16, 2022,
and May 13, 2023, respectively, both during periods of low flu activity.

Coverage
Model performance for the FluSight Ensembledroppedduringperiods
of relatively rapid change (see Figs. 1 and 3). The lowest 1-week horizon
95% value occurred for forecasts with target end dates of March 14,
2022, for 2021–22 and on November 21, 2022, for 2022–23 (Fig. 5).
Across forecasted weeks in the 2021–22 season, the FluSight Ensemble
had a minimum 95% coverage value at the 1-week horizon of 75%.
Lower 95% coverage for the 1-week horizon was observed in the
2022–23 season with a minimum of 29%. The maximum coverage rate
achieved by the FluSight Ensemble in any individual week was 100% in
both seasons. Minimum FluSight Ensemble 95% coverage values for
forecasts at the 4-week horizon in any individual week were 62% for
2021–22 and 15% for 2022–23.

Model performance, in terms of coverage, tended to decline at
longer time horizons for the FluSight Ensemble, baseline, and indivi-
dual contributed models (see Table 2). Over the forecast weeks, the
2021–22 FluSight ensemble had slightly higher overall 95% coverage
values of 89.32%, 86.11%, 85.15%, and 83.33% for the 1 to 4-week ahead
horizons respectively, compared to the 2022–23 season during which
the FluSight Ensemble had 95% coverage values of 85.79%, 81.64%,
78.78%, and 77.85% for the 1 to 4-week ahead horizons respectively. A
similar proportionofmodels hadhigher overall 95%coverage values at
the 1-week ahead horizon than at the 4-week ahead horizon for
2022–23 (14 of 18models) and 2021–22 (18 of 23models) (Table 2). Out
of the forecast targets and across forecast weeks, the FluSight
Ensemble’s 95% prediction interval contained at least 90% of the cor-
responding observed values only 55.56% and 64.52% of the time, for
2021–22 and 2022–23, respectively (Table 2). Ideally 95% prediction
intervals are just wide enough to capture 95% of eventually observed
values.

Discussion
The 2021–22 influenza season marked the return of from very low
levels of seasonal influenza activity observed in the U.S. following the
first years of the COVID-19 pandemic, and many components of the
2021–22 and 2022–23 FluSight Forecasting Challenges were new. One
of themost substantial changeswas the shift from the original FluSight
forecasting targets of weekly influenza-like-illness (ILI) percentages to
weekly counts of confirmed influenza hospitalizations. The COVID-19
pandemic resulted in the availability of a new data source, the unified
HHS-Protect dataset, which provided information on laboratory-
confirmed daily influenza hospitalizations from all 50 states, D.C.,
and Puerto Rico7,8. Confirmed influenza hospital admissionsmaymore
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directly inform influenza preparedness and response efforts. During
the time period that these forecasting results cover, data were repor-
ted daily, with mandatory reporting for influenza admissions from
most hospitals in each state, U.S. territories, and D.C starting February
2, 2022. Despite challenges accompanying the shift to the new target

of influenza hospitalizations, such as limited historic data from this
system for model training, these forecasts provided substantial utility
and reinforced a number of lessons learned over the course of pre-
vious forecasting activities, both during the pre-pandemic influenza
seasons and the COVID-19 pandemic.

Table 1 | Performance metrics for teams meeting inclusion criteria

Model Absolute
WIS

Relative
WIS

MAE 50% Cover-
age (%)

95% Cover-
age (%)

% of Forecasts
Submitted

Log Abso-
lute WIS

Log Rela-
tive WIS

2021-22

CMU-TimeSeriesSTAT 12.54 0.74 18.92 47 90 100 0.31 0.79

Flusight-ensembleENS 13.86 0.82 20.79 48 86 100 0.33 0.83

PSI-DICEMECH 14.03 0.83 20.17 43 82 100 0.33 0.84

UMass-trends_ensembleENS 14.35 0.85 22.24 71 97 100 0.36 0.91

SGroup-RandomForestENS 15.45 0.91 23.87 47 95 100 0.38 0.97

CEID-WalkSTAT 15.63 0.93 22.19 52 82 89 0.39 0.98

Flusight-baselineSTAT 16.99 1.00 24.10 49 83 100 0.40 1.00

MOBS-GLEAM_FLUHMECH 17.17 1.02 22.25 0.32 0.63 91 0.42 1.07

GT-FluFNPSTAT 17.57 1.03 23.40 0.39 0.69 96 0.38 0.98

SigSci-TSENSENS 17.79 1.03 24.86 38 72 96 0.40 1.01

IEM_Health-FluProjectSTAT 17.69 1.05 23.98 50 85 100 0.40 1.02

CU-ensembleENS 18.32 1.08 25.41 44 77 100 0.39 0.98

LUcompUncertLab-TEVAENS,STAT 21.02 1.20 29.99 54 86 89 0.41 1.04

UVAFluX-EnsembleENS 21.65 1.27 25.76 38 64 99 0.45 1.14

LUcompUncertLab-
VAR2_plusCOVIDSTAT

22.03 1.30 28.99 42 74 94 0.42 1.08

LUcompUncertLab-
VAR2K_plusCOVIDSTAT

24.44 1.39 32.43 0.42 0.74 85.19 0.47 1.19

UT_FluCast-VoltaireSTAT 23.64 1.39 35.19 0.50 0.91 95.13 0.45 1.15

LUcompUncertLab-VAR2STAT 25.93 1.53 35.05 39 72 94 0.53 1.35

LUcompUncertLab-VAR2KSTAT 26.81 1.54 39.35 42 83 89 0.61 1.54

LosAlamos_NAU-
CModel_FluSTAT, MECH

28.69 1.70 36.14 26 59 100 0.63 1.62

SGroup-SIkJalphaSTAT 28.94 1.70 38.59 18 46 100 0.49 1.24

GH-FlusightENS 30.93 1.81 31.89 6 13 94 0.74 1.88

SigSci-CREGSTAT 27.36 1.97 31.00 19 44 89 0.80 2.06

2022-23

MOBS-GLEAM_FLUHMECH 42.20 0.61 57.97 42 78 94 0.37 0.66

CMU-TimeSeriesSTAT 44.48 0.67 65.94 49 87 94 0.41 0.70

PSI-DICEMECH 47.45 0.70 63.17 48 80 100 0.40 0.70

MIGHTE-NsembleENS,AI/ML, STAT 48.99 0.73 67.50 53 82 96 0.41 0.70

Flusight-ensembleENS 51.72 0.77 71.04 56 81 100 0.44 0.74

UMass-trends_ensembleENS 53.86 0.80 79.40 63 89 100 0.49 0.83

GT-FluFNPSTAT 59.75 0.81 72.88 56 75 89 0.90

SGroup-RandomForestENS 54.29 0.82 75.98 53 84 97 0.52 0.87

CU-ensembleENS 62.23 0.83 75.57 51 70 84 0.51 0.85

CEPH-Rtrend_fluHSTAT 54.20 0.84 70.47 44 78 86.87 0.58 1.07

UGA_flucast-OKeeffeSTAT 62.13 0.93 77.33 50 72 91 0.61 1.02

VTSanghani-ExogModelAI/ML 72.30 0.98 92.56 30 61 80 0.63 1.04

Flusight-baselineSTAT 67.69 1.00 80.05 49 74 100 0.59 1.00

SigSci-TSENSENS 64.27 1.00 80.02 58 74 93 0.66 1.11

UNC_IDD-InfluPaintSTAT 61.14 1.05 77.90 40 75 76 0.52 0.96

UVAFluX-EnsembleENS 78.71 1.11 94.45 22 41 95 0.61 1.02

SigSci-CREGSTAT 79.68 1.33 89.29 38 62 91 0.68 1.16

JHU_IDD-CovidSPMECH 129.16 1.88 174.98 48 80 81 0.49 0.82

Forecastmetrics are across all fifty states, D.C., and Puerto Rico forecast targets. The season is indicated in bold in themodel column. TheAbsoluteWIS column refers to theWeighted Interval Score
for each model. The Relative WIS compares the WIS value of each model to the Flusight-baseline model. All models with a relative WIS score less than one outperformed the baseline model when
evaluated solely uponWIS. 95% and 50% coverage values are provided for the percent of times that reported weekly incidence values were within the 95% or 50% prediction intervals, respectively,
across all the forecast targets submitted byeach team. Thepercent of forecasts submitted is determinedby thenumber of forecast targets submittedby each teamout of all possible forecast targets
occurringwithin theduration of the evaluation period. See Supplementary Table 1 for additionalmodel details. ENSEnsemble, STATStatistical, MECHMechanistic, AI/MLArtificial Intelligence/Machine Learning.
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Forecast performance–accuracy
As demonstrated in this analysis, collaborative forecasting hub
approaches provide opportunities to systematically evaluate perfor-
mance across multiple modeling strategies and enable the creation of
ensemblemodels. Since a particularmodel’s performance often varies
within and across seasons13, it is helpful to have a unified representa-
tion of model inputs that can be used to quickly assess expected
upcoming trends. Additionally, this work indicates that ensemble
models may also provide more consistently reliable and well-
calibrated forecasts across spatial jurisdictions.

Evaluated models cover mechanistic, statistical, ensemble, and AI
ormachine learningmodels (seeTable 1 and SupplementaryTable 1 for
additional information). The diversity of model types among the top-
performing models was consistent across seasons. In light of this
heterogeneity in top-performing model structures and the many

dimensions of differences across forecastingmodel it has not yet been
possible to identify particular characteristics of individual models that
are most often associated with high performance. Individual models
often vary greatly in their performance within and across seasons
(Fig. 1c–e). Across the evaluation period for both seasons and all
forecast jurisdictions, the FluSight ensemble was among the top 5
performing models in terms of Absolute WIS and Relative WIS. Addi-
tionally, when considering forecast performance by rank (Fig. 2), the
FluSight ensemble more accurately predicted weekly influenza hospi-
tal admissions than most contributed models with the majority of the
FluSight ensemble forecasts falling within the top 50% of submitted
forecasts (Table 1, Fig. 2). While the PSI-DICE, CMU-TimeSeries, and
MOBS-GLEAM_FLUH models have more forecasts in the top 25%, they
exhibit higher spatial heterogeneity than the FluSight ensemble in
forecast performance (Fig. 3). The generally high accuracy of the
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FluSight Ensemble relative to that of individual models is consistent
with previous findings that ensemble models, that utilize the outputs
from multiple teams, generally outperform individual models on
average14–17. Like most models, ensembles may have decreased per-
formance during periods of rapid change when some individual
models may have higher accuracy (Fig. 1c, d); however, identifying
these time frames and corresponding high-performing models has
been difficult a priori5,6.

Oneoption tobetter evaluate forecast performanceduringperiods
of change and across multiple magnitudes is to evaluate transformed
counts18. We did not find notable differences in model performance
using this approach in either season.We expected that theremight be a
stronger influence on performance in the 2022–2023 season which saw
a sharp increase in hospitalizations in fall 2022, but it is possible that
models were not able to capture this initial rise and thus did not accrue
additional benefit in the log transform score. The long tail of the season
may also have elevated scores across all models.

Forecast model performance tended to decline over longer time
horizons. For both the 2021–22 and 2022–23 FluSight seasons, accu-
racy declined across the 1–4 week ahead horizons. This trend has been
observed previously in multiple forecast activities. The U.S. COVID-19
ForecastHub observed declines in accuracy for forecasted deaths over
periods of 1–4weeks ahead, and German and Polish COVID-19 forecast
efforts also showeddeclines in performance at the 3- and4-week ahead
horizons19. Accuracy scores were also shown to decline over longer
time horizons for influenza-like-illness forecasts13.

Across the forecast weeks, individual models often showed
larger increases in absolute WIS, while the FluSight ensemble had

the smallest range of absolute WIS for each season, demonstrating
one aspect of stability for the FluSight ensemble. In terms of state-
level performance, the FluSight ensemble tended to be more
robust than individual models, as measured by relative WIS scores
(Fig. 3). Similarly, the COVID-19 Forecast Hub ensemble performed
better across all locations, with the COVID-19 Hub ensemble being
the only model to outperform the baseline in each of the forecast
locations14.

Forecast performance – coverage
Our analysis found that, as the forecast horizon moved from 1 to 4-
weeks, the FluSight ensemble 95% prediction interval coverage
declined from 89.61% to 83.74% in 2021–22 and from 85.69% to
77.85% in 2022–23. These results highlight room for improvement
inmodel calibration, as almost all models (with the exception of the
UMass trends ensemble) were overconfident in their predictions
(Table 2). The lack of comparable historical data for model fitting
may have contributed to poor calibration of 95% prediction
intervals.

Consistent with past forecasting efforts, forecasting remains dif-
ficult in periods of rapid change and epidemic turning points (e.g.,
during initial increases or periods of peaking activity). This analysis
highlights declines in forecast accuracy and coverage during periods
of rapid change in influenza hospitalizations during both the 2021–22
and 2022–23 seasons. For example, the only model that had 95%
coverage greater than 80% from October to January 2023 when hos-
pitalizations were rapidly increasing and then peaking was LUCom-
pUncertLab-humanjudgment, which did not end up meeting the
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Fig. 3 | Relative WIS by state and model. State-level WIS values for each team
relative to the FluSight baselinemodel. The range of RelativeWIS values below 1,
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WIS scores on log transformed counts are displayed in Supplementary Fig. 7.
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inclusion criteria for the full season analysis. Analogous declines were
also observed for COVID-19 case forecasts20 and mortality forecasts
across different waves of the COVID-19 pandemic14, where forecasts
systematically underpredicted during periods of increase and over-
predicted during periods of decrease.

Times of changing dynamics are the most important periods for
public health response and communication. While forecasting the
magnitude at these times may be less tractable, it is possible that we
may be able to providemore reliable information during these difficult
forecasting periods so that forecasts are better able to inform critical
planning. In general, most ensembles tend to predict less activity than
observed when trends are steeply increasing and predict more activity
than observed when trends are steeply decreasing, especially when
there is between- or within-model uncertainty in the timing of peaks in
cases, hospitalizations, or deaths. Thus, it may be possible that an
ensemble of forecasts for categorical increases ordecreases in activity21

may have additional utility in terms of preserving valuable information
while also maintaining the benefits of the use of ensembles over indi-
vidual models. As such, the FluSight Forecasting Hub added an
experimental target in the 2022–23 season for forecasting categorical
rate changes in influenza hospitalizations (e.g., probabilities of increase
or decrease)22. Assessing the utility of this additional forecast targetwill
be an important area of investigation moving forward. Aside from
soliciting a separate forecasting target, it may be possible to determine
which forecasting models perform better during different phases of
epidemics and then use this information to weight models accordingly
when their forecasts are aggregated into an ensemble23.

Influenza forecasting in the COVID-19 era: challenges and
opportunities
Several challenges for forecasting existed during the 2021–22 and
2022–23 influenza seasons. First, as noted earlier, the change in the
forecasting target from outpatient ILI percentages to counts of
influenza-associated hospitalizations from a data collection system

established during the COVID-19 pandemic meant that there was little
data for forecast calibration and training. This shift also required
changes in data processing for teams that had produced ILI forecasts
previously. While previous data on influenza-associated hospitaliza-
tions was available through the FluSurv-NET system, differences in
reporting and the spatial resolution, of the FluSurv-NET system may
have complicated the process of utilizing this dataset for the purpose
of forecasting model calibration. In addition, reporting within the
unified HHS-Protect hospitalization dataset changed throughout this
forecasting endeavor. For example, the confirmed influenza hospital
admissions field only became mandatory for the 2021–22 season on
February 2, 2022, leading to an increase in the number of reported
hospitalizations and a change in hospital reporting practices during a
period of increasing influenza activity.

In addition to changing reporting patterns, the COVID-19
pandemic brought other challenges for forecasting influenza,
including changing human behavior. The quantity and types of
interactions between people likely changed in tandem with per-
ceptions of the risk of illness with COVID-19. In addition, the use of
nonpharmaceutical interventions (NPIs) aimed at preventing SARS-
CoV-2 transmission (e.g., stay-at-home orders, mask-wearing)
reduced transmission of other respiratory pathogens9, including
influenza. These changes in behavior may be related to the minimal
influenza activity observed in the U.S. in the 2020–21 season and
the low severity but atypically late influenza season observed in the
2021–22 season. Population-level behavior is difficult to predict,
especially in the context of changing public health recommenda-
tions and emerging SARS-CoV-2 variants, which complicates the
process of forecasting. Despite these challenges, FluSight fore-
casting teams provided forecasts of confirmed influenza hospita-
lizations throughout each season, which helped public health
officials anticipate trends during the unusually prolonged influenza
season in 2021–22, with forecasting efforts extending into June,
and then again for the atypically early 2022–23 season.
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While the shift to forecasting for a new target presented a mod-
eling challenge, the utility of the corresponding new data source
should be recognized24. TheHHS-Protect dataset7provided, in addition
to the state-level timeseries, facility-level data, which is at a higher
spatial resolution thanother indicators of influenza activity. During the
forecasting time frameanalyzedhere, thedatawerealso reporteddaily
with previous-day admission data published as soon as the day after
their occurrence, providing a timely sourceof information. As our data
update analysis (Supplementary Figs. 2–4) shows, these data demon-
strated remarkably stable reporting behavior, particularly during the
2021–22 season, with 94% of updates resulting in changes of under 10
hospitalizations for subnational jurisdictions. Stability of reporting
decreased slightly during the 2022–23 season, with 83% of updates
resulting in changes of under 10 hospitalizations for subnational jur-
isdictions. Degraded forecast performance has been associated with
large revisions to initially observed values6, and consistency in
reporting is an important component of a reliable forecasting target.
Additionally, this dataset provided national and jurisdictional-level
data for confirmed influenza hospital admissions. In contrast with ILI,
this indicator eliminated the need to model outpatient visits asso-
ciated with co-circulating non-influenza pathogens that can cause ILI.
The continued availability of rapid, disease-specific indicators of hos-
pitalization, such as those provided by these data, will facilitate
improved forecasting utility and possibly improvements in accuracy25,
particularly when forecasts are informed by mechanistic transmission
models.

The FluSight forecasting collaboration adapted quickly in 2021 to
utilize a novel laboratory-confirmed influenza hospital admission
dataset. Even with limited calibration data and atypical influenza sea-
sonality in the 2021–22 and 2022–23 seasons, the FluSight ensemble

forecast provided more robust forecasts than individual component
models across spatial jurisdictions and time horizons. This result
mirrors those of other forecasting hubs. Collaborative hubs also offer
the ability for frequent feedback and interaction between modeling
teams, providing opportunities for rapidly sharing observations about
underlying data and insights for forecast development26. We observed
poor coverage and general performance, especially at the beginning of
the 2022–23 season and during other periods of rapid change. Col-
lective insights from these challenges can also inform when forecasts
should be interpreted with extra caution. Ongoing availability of the
confirmed influenza hospitalization dataset, which covers all states,
could improve model calibration and ultimately contribute to the
improvement of influenza forecast performance and utility, as well as
continued exploration and improvement of forecasting and ensem-
bling methodologies. These improvements are needed, particularly to
more accurately capture trends and appropriate levels of uncertainty
during times of rapid change.

Methods
Forecasts of weekly influenza hospital admissions were openly soli-
cited fromexisting COVID-19 and influenza forecasting networks every
Monday from January 10, 2022, through June 20, 2022, for the
2021–22 season. For the 2022–23 season, forecasts were solicited
every Monday from October 17, 2022, through January 9, 2023, and
then every Tuesday from January 17, 2023, through May 17, 2023.
Weeks were defined in terms of MMWR Epiweeks (EW) spanning
Sunday to Saturday27. Forecasted jurisdictions included the U.S.
national level, all fifty states, Washington D.C., and Puerto Rico. Fore-
casts for the Virgin Islands, while requested, were not included in this
evaluation due to low reported hospitalization counts and irregular
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data submission. Each week, forecasting teams were asked to provide
jurisdiction-specific point estimates and probabilistic predictions for 1,
2, 3, and 4-week ahead weekly counts of confirmed influenza hospital
admissions. A total of 23 quantiles were requested for the probabilistic
forecasts: 0.010, 0.025, 0.050, 0.100, 0.150, …, 0.950, 0.975, and
0.990. Teams were not required to submit forecasts for all four weeks

ahead or for all locations. Additional details of the forecast submission
process (e.g., file formatting, submission procedures, and required
metadata) are provided in the FluSight-forecast-data GitHub
Repository22.

The FluSight Ensemble model was generated for all forecasted jur-
isdictions each week using the unweighted median of each quantile

Table 2 | One-to-four-week coverage and one-to-four-week percent of coverage above 90% for teams meeting inclusion
criteria. One-to-four-week is abbreviated with each number and “Wk” indicates week

Model Relative WIS % WIS Below
Baseline

Coverage % Coverage above 90

1 Wk 2 Wk 3 Wk 4 Wk 1 Wk 2 Wk 3 Wk 4 Wk

2021-22

CMU-TimeSeries 0.74 75.00 90.17 91.45 90.60 86.54 50.00 72.22 61.11 27.78

Flusight-ensemble 0.82 92.31 89.32 86.11 85.15 83.33 55.56 33.33 27.78 38.89

PSI-DICE 0.83 76.92 88.89 83.87 78.31 76.50 38.89 27.78 5.56 0.00

Umass-trends_ensemble 0.85 48.08 96.15 97.65 96.90 96.15 100.00 100.00 100.00 100.00

Sgroup-RandomForest 0.91 44.23 95.41 94.87 94.66 94.12 88.89 88.89 83.33 88.89

CEID-Walk 0.93 76.92 82.09 83.77 81.01 81.85 37.50 37.50 31.25 37.50

Flusight-baseline 1.00 0.00 82.26 84.19 82.48 81.62 27.78 22.22 22.22 22.22

MOBS-GLEAM_FLUH 1.02 56.00 71.11 65.80 59.79 56.49 0.00 0.00 0.00 0.00

GT-FluFNP 1.03 54.00 70.11 68.67 68.22 70.11 5.56 16.67 16.67 22.22

SigSci-TSENS 1.03 46.00 74.11 73.44 70.54 69.20 11.11 5.56 5.56 5.56

IEM_Health-FluProject 1.05 48.08 91.45 86.54 82.59 78.21 72.22 38.89 22.22 22.22

CU-ensemble 1.08 32.69 79.59 80.66 76.50 71.90 16.67 11.11 0.00 0.00

LucompUncertLab-TEVA 1.20 23.08 84.86 85.58 86.06 86.18 25.00 18.75 25.00 31.25

UVAFluX-Ensemble 1.27 25.00 66.05 65.51 62.58 60.95 11.11 0.00 0.00 0.00

LucompUncertLab-
VAR2_plusCOVID

1.30 38.46 76.70 74.77 73.30 70.14 17.65 5.88 5.88 5.88

LUcompUncertLab-
VAR2K_plusCOVID

1.39 25.00 75.72 75.24 74.04 72.72 6.25 0.00 0.00 0.00

UT_FluCast-Voltaire 1.39 5.77 94.73 90.96 89.13 90.42 83.33 72.22 55.56 61.11

LucompUncertLab-VAR2 1.53 11.54 73.87 72.29 72.17 70.81 11.76 5.88 11.76 11.76

LucompUncertLab-VAR2K 1.54 11.54 81.97 81.49 83.05 85.46 6.25 18.75 25.00 37.50

LosAlamos_NAU-Cmodel_Flu 1.70 13.46 65.28 59.29 56.52 54.06 5.56 0.00 0.00 0.00

Sgroup-SikJalpha 1.70 1.92 40.28 45.73 48.08 48.29 0.00 0.00 0.00 0.00

GH-Flusight 1.81 5.77 18.33 12.90 11.99 10.63 0.00 0.00 0.00 0.00

SigSci-CREG 1.97 12.00 46.87 43.98 43.86 43.13 0.00 0.00 0.00 0.00

2022-23

MOBS-GLEAM_FLUH 0.61 94.12 81.34 77.50 76.84 78.23 41.94 29.03 29.03 25.81

CMU-TimeSeries 0.67 86.54 86.27 87.12 87.25 86.73 58.06 64.52 70.97 70.97

PSI-DICE 0.70 92.31 88.03 81.27 77.17 75.37 64.52 67.74 64.52 58.06

MIGHTE-Nsemble 0.73 94.23 86.16 84.22 81.71 76.80 63.33 60.00 66.67 60.00

Flusight-ensemble 0.77 100.00 85.79 81.64 78.78 77.85 64.52 67.74 64.52 61.29

Umass-trends_ensemble 0.80 92.31 90.88 89.89 87.41 86.17 77.42 74.19 70.97 70.97

GT-FluFNP 0.81 92.00 75.98 72.70 75.00 77.30 55.17 55.17 55.17 65.52

SGroup-RandomForest 0.82 96.15 90.06 84.49 81.86 80.38 73.33 70.00 70.00 66.67

CU-ensemble 0.83 63.46 71.60 71.38 69.90 67.75 46.15 53.85 53.85 53.85

CEPH-Rtrend_fluH 0.84 71.15 75.82 80.22 79.33 78.02 46.43 50.00 57.14 46.43

UGA_flucast-Okeeffe 0.93 66.67 80.20 73.07 68.95 66.99 50.00 46.67 40.00 40.00

VTSanghani-ExogModel 0.98 34.62 65.62 61.54 58.00 58.31 0.00 0.00 0.00 4.00

Flusight-baseline 1.00 0.00 78.72 74.26 71.34 69.85 58.06 58.06 58.06 58.06

SigSci-TSENS 1.00 42.00 76.31 74.12 72.93 71.33 54.84 54.84 54.84 58.06

UNC_IDD-InfluPaint 1.05 80.39 75.12 74.18 75.12 75.82 52.00 44.00 64.00 56.00

UVAFluX-Ensemble 1.11 5.88 42.88 43.53 39.35 39.80 0.00 0.00 0.00 0.00

SigSci-CREG 1.33 14.00 68.28 62.27 58.85 56.87 48.39 48.39 45.16 45.16

JHU_IDD-CovidSP 1.88 31.37 86.74 81.67 78.18 73.60 65.38 61.54 53.85 48.00

% WIS Below Baseline shows the percent of WIS values for each model below the corresponding Flusight-baseline WIS. The ‘% Coverage above 90’ columns show the percent of weekly 95%
coverage values that aregreater than or equal to 90% for eachmodel byhorizon.Modeling teams areorderedwithin each seasonby their relativeWIS performance. Season is indicated in bold in the
model column.

Article https://doi.org/10.1038/s41467-024-50601-9

Nature Communications |         (2024) 15:6289 9



among eligible forecasts. Forecastswere considered eligible for inclusion
in the ensemble if they were submitted by 11:59 PM ET on the due date
and if all requested quantiles were provided. Modeling teams could fur-
ther designatewhether a particularmodel’s forecasts should be included
in the ensemble. If a forecast was designated as “other”, it was not
included in the FluSight ensemble and not evaluated in this manuscript.

Baseline forecasts and their prediction intervals were generated
each week using the ‘quantile baseline’ method in the simplets R
package28 based on the incident hospitalizations reported in the pre-
vious week, with underlying methodology described as follows. The
median prediction of the baseline forecasts is the corresponding tar-
get value observed in the previous week, and noise around themedian
prediction is generated using positive and negative 1-week differences
(i.e., differences between consecutive reports) for all prior observa-
tions, separately for each jurisdiction. Sampling distributions were
truncated to prevent negative values. The same median prediction is
used for the 1-through 4-week ahead forecasts. The baseline model’s
prediction intervals are generated from a smoothed version of this
distribution of differences14,29.

For inclusion in this analysis, forecasting teams must have sub-
mitted greater than or equal to 75% of the requested targets, for sub-
national jurisdictions, between the forecast evaluation period of
February 21, 2022, to June 20, 2022 (total of 18 weeks) for 2021–22 or
October 17, 2022, to May 15, 2023 (total of 30 weeks) for 2022–23.
These periods translate to 4-week ahead forecast target end dates of
March 19, 2022–July 16, 2022 for the 2021–22 season andNovember 11,
2022–June 10, 2023 for the 2022–23 season. The start date of the
evaluation period for the 2021–22 season was chosen to be the first
forecast date following two weeks of mandatory reporting of con-
firmed influenza hospitalizations8 to minimize the potential effects of
reporting changes on forecasts. For 2021-22 and 2022-23, three and 12
models were excluded from the primary analysis, respectively, for not
meeting the inclusion criteria.

Forecasts were evaluated against the reported number of the
previous day’s laboratory-confirmed influenza admissions (Field #34)
from the COVID-19 Reported Patient Impact and Hospital Capacity by
State Timeseries7,8, with data shifted one day earlier to align with
admission date and then aggregated to the weekly scale (from Sunday
to Saturday)22, using data as of September 12, 2022, for 2021–22 and
June 13, 2023, for 2022–23. This dataset is subject to revision by sub-
mitting facilities; therefore, we analyzed backfill and revision for each
season (Supplementary Analysis 1). For each of the contributed fore-
casts included in the analysis, values were rounded to more closely
relate the values of prediction intervals of forecasts to the reported
numbers of hospital admissions. In particular, forecast values for
quantiles less than0.5were roundeddown, values for quantiles greater
than 0.5 were rounded up, and values for the 0.5 quantiles were
rounded normally. This rounding procedure ensured that teams were
not penalized for missing the prediction interval by less than one
hospital admission.

To evaluate forecast performance across all states, D.C., and Puerto
Rico, we primarily used the Weighted Interval Score (WIS). The WIS is a
proper score that generates interval scores for probabilistic forecasts
provided in the quantile format14,19. Briefly, interval scores are used to
account for dispersion, underprediction, and overprediction. Forecasts
with lower absolute WIS values are considered more accurate than
forecasts with higher absolute WIS values. The relative WIS computes
the ratio of averageWIS values for each pair of models on the subset of
forecasts that both models provided and then normalizes by the mean
pairwise WIS ratio for the baseline model (See “Supplementary Meth-
ods”). Relative WIS values were calculated using the scoringutils
package30. Simple means were calculated for absolute and relative WIS
to get a score for each model, location, and season. Median absolute
error (MAE) values are also considered for characterizing differences
between forecasted and reported weekly hospitalizations14. Unless

otherwise specified, forecasts of national hospitalizations were not
included in summary metrics for accuracy (e.g., absolute WIS) since
these forecasts can have a disproportionate impact on the overall score.
To address concerns related to assessingmeasures of absolute error on
a natural scale when forecasts span multiple orders of magnitude18, we
performed an analogous analysis on log-transformed hospitalization
counts after adding one to all counts to account for zero counts (Sup-
plementary Analysis 2).We also performed a separate analysis including
only national forecasts (Supplementary Analysis 3).

In addition, we considered coverage values of the quantile-based
prediction intervals to assess each model’s ability to appropriately cap-
ture uncertainty in forecasts. Coverage values are defined as the percent
of observed values that fall within the 50%or 95%prediction intervals for
the corresponding date. Ideally, the percent coverage values will be
equal to the corresponding prediction interval, e.g., 95% percent pre-
diction intervals should contain the reported value 95% of the time.

Comparing model forecasts is complicated by the fact that not all
models submit forecasts for each of the forecast targets and for each
forecastweek in the evaluation period. To partially account for this, we
consider the percentage of forecasts submitted as an indicator of how
often and how many different types of forecasts were submitted by
each team. Following Cramer et al.14, we also consider a standardized
rank score that uses the number of models forecasting a particular
location and target and then ranks these forecasts. Ranks were deter-
mined by relative WIS performance, with the best-performing model
for each observation being assigned a rank of 1 and the worst-
performing model receiving a rank equal to the number of models
submitting a forecast for the observation. These ranks were standar-
dized by rescaling so that 0 corresponds to the worst rank and 1 cor-
responds to the best rank.

All analyses were conducted using the R language for statistical
computing (version 4.0.3)31 with scoringutils (version 1.2.2) to generate
scores30.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The forecast data for each model are available from the FluSight Fore-
cast Hub GitHub repository (https://github.com/cdcepi/Flusight-
forecast-data; https://doi.org/10.5281/zenodo.12686773)22 and the Zol-
tar forecast archive12 (https://zoltardata.com/project/299 /viz). These
are both publicly accessible. The target data are also available as daily
counts for each jurisdiction from HHS7.

Code availability
The code used to generate all figures and tables in the manuscript are
available in a public repository (https://github.com/cdcepi/FluSight-
manuscripts, https://doi.org/10.5281/zenodo.12625724)32.
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