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Bats have received considerable recent attention for infectious disease research because of their potential to host and transmit
viruses, including Ebola, Hendra, Nipah, and multiple coronaviruses. These pathogens are occasionally transmitted from bats to
wildlife, livestock, and to humans, directly or through other bridging (intermediate) hosts. Due to their public health relevance,
zoonotic viruses are a primary focus of research attention. In contrast, other emerging pathogens of bats, such as bacteria, are
vastly understudied despite their ubiquity and diversity. Here, we describe the currently known host ranges and geographic
distributional patterns of potentially zoonotic bacterial genera in bats, using published presence-absence data of pathogen
occurrence. We identify apparent gaps in our understanding of the distribution of these pathogens on a global scale. The most
frequently detected bacterial genera in bats are Bartonella, Leptospira, and Mycoplasma. However, a wide variety of other
potentially zoonotic bacterial genera are also occasionally found in bats, such as Anaplasma, Brucella, Borrelia, Coxiella, Ehrlichia,
Francisella, Neorickettsia, and Rickettsia. The bat families Phyllostomidae, Vespertilionidae, and Pteropodidae are most frequently
reported as hosts of bacterial pathogens; however, the presence of at least one bacterial genus was confirmed in all 15 bat families
tested. On a spatial scale, molecular diagnostics of samples from 58 countries and four overseas departments and island states
(French Guiana, Mayotte, New Caledonia, and Réunion Island) reported testing for at least one bacterial pathogen in bats. We also
identified geographical areas that have been mostly neglected during bacterial pathogen research in bats, such as the Afrotropical
region and Southern Asia. Current knowledge on the distribution of potentially zoonotic bacterial genera in bats is strongly biased
by research effort towards certain taxonomic groups and geographic regions. Identifying these biases can guide future surveillance
efforts, contributing to a better understanding of the ecoepidemiology of zoonotic pathogens in bats.

1. Introduction

In the past two decades, field studies have focused primarily
on the diversity and distribution of medically important,
bat-associated emerging viral pathogens, including Ebola,
Hendra, Nipah, Marburg, and multiple coronaviruses [1-6].
Bats are certainly important reservoirs of myriad viruses [7],
but their special role as hosts of zoonotic viruses when
compared to other mammal taxa is a matter of debate. While
some studies claim that bats host more zoonotic viruses per
species when compared to other mammalian orders, such as

rodents [8, 9], more recent work has shown that the number
of zoonotic viruses found in bats is largely a function of host
species diversity and that the proportion of zoonotic viruses
varies little across mammalian orders [10]. Within bats, viral
richness and the probability of viral spillover vary according
to host and pathogen traits, including the geographic dis-
tribution of host species [8, 11, 12], virus taxa [10], the
intersection of bat behavior and viral pathology [13], and
host population genetic structure [14].

While viruses are of great concern for public health and
host conservation due to potential spillover into susceptible
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FiGUure 1: Number of studies focusing on bat-associated viruses
(grey), and bacterial pathogens (purple) in PubMed 1948-2022
(October).

species [15], persecution of bats, e.g., culling colonies due to
fear of diseases [16], and disease-induced mass mortality
[17-19], our knowledge on infectious bacterial pathogens of
bats is limited. A strong study bias currently exists towards
viral research compared with bacterial research in bats
(Figure 1). Several potentially zoonotic bacterial pathogens
have been detected in either bats or in their ectoparasites
worldwide [20-24], and some evidence of bat-to-human
transmission of bacterial pathogens has been documented
[25-28]. For instance, bat-associated Bartonella sp. anti-
bodies have been observed in humans in Africa, suggesting
potential for inducing disease [25]. Additionally, human-
pathogenic Bartonella sp. and Borrelia sp. have also been
detected in bats and their ectoparasites, suggesting circu-
lation in bat populations [27-29]. Moreover, genetically
highly similar strains of Mycoplasma causing disease in
humans have been found in bats and their associated
ectoparasites [26].

Nevertheless, many such transmission events likely go
undocumented due to a lack of sufficient surveillance effort.
Bat-associated pathogens can be transmitted to humans,
wildlife, and to domestic species through several trans-
mission routes. These include exposure to body fluids (e.g.,
saliva, feces, blood) and arthropod vectors (e.g., ticks, fleas,
mosquitoes) [30]. Additionally, humans can be exposed to
bats and bat-associated pathogens through tourism and
religious rituals (such as visiting caves) [31], bat hunting, and
consumption [32], or by consuming food products con-
taminated with body fluids of infected animals (e.g., fruits
eaten by fruit bats under roosts) [33, 34].

Bat-associated bacterial pathogens can be divided into
multiple groups based on transmission routes: vector-borne
ones (transmitted by hematophagous arthropods), such as
Anaplasma, Bartonella, Borrelia, Ehrlichia, and Rickettsia
spp.; directly transmitted pathogens (transmitted by close
contact or contact with contaminated products), such as
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Brucella spp.; and pathogens transmitted either or both
environmentally and via vectors (currently uncertain in
bats), such as Coxiella burnetii, Leptospira spp., and My-
coplasma species.

In recent years, several newly and re-emerging in-
fectious food- and waterborne bacterial pathogens have
also been identified in bats, such as Leptospira spp.
[22, 35, 36] and the recently discovered novel bat-
associated Brucella sp. [37]. Some of these are recog-
nized as potentially zoonotic and may have major conse-
quences for human health (Suppl. Table 1). For instance,
annual reports of leptospirosis reach over one million
human cases, resulting in about 58,900 deaths [38]. Bru-
cellosis is one of the world’s most common zoonotic
disease, and the novel strain from bats from the Republic of
Georgia is closely related to rodent strains found in the
same region starting in the 1960s ([39]; J. Foster unpubl.
data). Pathogenicity of the bat strain is currently unknown,
yet the rodent strain is highly pathogenic to humans
(A. Whatmore, unpubl. data). The pathology of bacterial
diseases in bats is largely unknown [20].

Despite an increasing number of studies showing the
frequent presence of bacterial pathogens in bats (Figure 1)
and in their ectoparasites (which may serve as vectors), our
understanding of the distribution and occurrence of these
pathogens and the disease exposure of humans, wildlife, and
domestic species is strikingly limited. Here, we aim to
summarize the current knowledge on bacterial pathogen
distributions and diversity both across host families and
geographically, using known pathogen occurrence data in
bats. Moreover, our goal was to identify underrepresented
sampling regions and taxonomic groups, which can help
develop more focused research projects, helping both bat
conservation and public health research.

2. Materials and Methods

We collected bacterial pathogen presence-absence data from
various literature sources published up to 2022 (last search
October 2022). We included data resulting from molecular
tests (PCR, qPCR) as well as data from microscopy, culture,
and serological tests. For prevalence calculation, only those
data where authors published individual presence-absence
pathogen occurrence in their samples using molecular re-
sults were included in our dataset. Data were omitted when
only positive data were published without information on
total tested individuals and when data could not be referred
to the individual level. In addition, only wild-caught or
salvaged (collected postmortem) individuals were included
in our dataset, excluding tests focusing on captive animals.

We focused on 11 bacterial genera with known zoonotic
potential (Suppl. Table 1): Anaplasma, Bartonella, Borrelia,
Brucella, Coxiella, Ehrlichia, Francisella, Leptospira, Myco-
plasma, Neorickettsia, and Rickettsia. Studies were retrieved
from Google Scholar and PubMed using the following
combinations of search words: Chiroptera or bat*,
Anaplasma®, Bartonella®, Borrelia*, Brucella*, Coxiella®,
Ehrlichia®, Francisella®, Leptospira®, Mpycoplasma OR
Haemoplasma®, Neorickettsia®, Rickettsia*, and bacterial
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pathogen. Additionally, following Birtles et al. [40], previous
reports of Grahamella were collected and categorized as
Bartonella in the dataset [40]. The PRISMA flowchart [41]
documenting our systematic review can be found in the
Supplementary Material (Suppl. Fig. 1). As we detail below,
we excluded enteropathogenic bacteria that have been de-
tected in bats, such as Escherichia coli and Campylobacter,
Salmonella, and Yersinia species due to an incomplete un-
derstanding of their zoonotic potential.

For each dataset, we recorded detailed information
whenever it was available, including surveillance method
(culture, microscopy, serology, PCR, qPCR), sample source,
host species, handling method (released, euthanized, sal-
vaged), country, region, location, coordinates, collection
date, number of individuals tested, and number of positive
individuals.

For Figure 1, we searched the number of studies pub-
lished and found in PubMed, using the search words: bat OR
Chiroptera® AND bacteria®, as well as bat OR Chiroptera*
AND virus* to allow comparisons among the number of
published papers on the different topics.

To compare estimates of bacterial pathogen prevalence,
we focused only on estimates from studies that used mo-
lecular detection such as PCR or qPCR to limit issues with
false negatives due to low sensitivity of alternative methods,
including culture, microscopy, and microbiome sequencing.
While data from these studies were excluded from preva-
lence comparisons, they were still used as presence mea-
surements for the purpose of geographic and taxonomic
analysis of bat hosts of bacterial pathogens. To assess
whether bacterial pathogen prevalence varies across bat
families, we performed a phylogenetic meta-analysis. We
matched 295 bat host species of bacterial pathogens to
a recent mammal phylogeny [42]. For 13 recently described
species that could not be matched to the phylogeny, we
matched the species to the congener with which they were
most recently considered synonymous: Eumops bonariensis
replaced Eumops nanus, Molossus rufus replaced Molossus
nigricans, Pteronotus davyi replaced Pteronotus fulvus,
Pteronotus parnellii replaced Pteronotus mesoamericanus,
Artibeus lituratus replaced Artibeus intermedius, Mimon
crenulatum replaced Gardnerycteris keenani, Uroderma
bilobatum replaced Uroderma convexum, Mpyotis keaysi
replaced Myotis pilosatibialis, Chaerephon pumilus replaced
Mops leucogaster and Mops pusillus, Miniopterus schreibersii
replaced Miniopterus orianae, Myotis nigricans replaced
Mpyotis caucensis, and Mpyotis brandtii replaced Myotis
sibiricus. Meta-analysis results, where these species were
excluded instead of replacing, were qualitatively similar, so
we only present the analysis with these replacements. We
calculated the Freeman—Tukey double arcsine transformed
prevalence and the sampling variance for each host species
and pathogen [43]. We then fit hierarchical meta-analysis
models [44] with random effects for study, taxonomic
species, and phylogeny (converting the bat phylogeny to
a covariance matrix) to assess the heterogeneity in preva-
lence attributable to these factors.

We first fit a random effects model with only an intercept
and used restricted maximum likelihood for unbiased

estimation of the variance components for the random ef-
fects and derived I” to quantify the percentage of variance in
the meta-analysis that is attributable to true heterogeneity
for each random effect [45]. We used Cochran’s Q to test if
the estimated heterogeneity in prevalence was greater than
expected by the sampling error alone. We then fit a second
mixed effects model for each pathogen that included the
random effects and fixed effects for bat families to test for
differences in prevalence among families. Pseudo-R*> was
calculated based on the deviance explained by mixed effects
model versus the model with only random effects [46].
Cochran’s Q was also calculated on the mixed effects model
to quantify whether the residual heterogeneity in prevalence
was greater than expected after accounting for sampling
error and fixed effects. Lastly, we back-transformed fitted
coefficients (double arcsine transformed prevalence) and
95% confidence intervals from the mixed effects models to
compare the meta-analysis estimated prevalence against
untransformed prevalence, calculated by dividing total
positive by total tested samples for each pathogen and bat
family over all studies, with confidence intervals estimated
using the Clopper—Pearson exact method [47]. While meta-
analysis was only performed on seven pathogen genera with
sufficient testing (n > 1,000; including Bartonella, Leptospira,
Mpycoplasma, Rickettsia, Anaplasma, Borrelia, and Coxiella),
estimated prevalence with exact confidence intervals was
estimated by bat family for all 11 pathogen genera (Suppl.
Tables 2-4).

Statistical analysis and data visualization were conducted
in R 4.2.1 [48], using ggplot2 [49], ggpubr [50], leaflet [51],
and rnaturalearth packages [52]. We also used the ape [53],
metafor [43], ggtree [54], sp [55], and rgeos [56] packages for
manipulating and plotting phylogenies, meta-analysis, and
mapping. Code for the meta-analysis was partly adapted
from a recent preprint by Cohen et al. [57].

3. Results

We found a total of 23,412 pathogen presence-absence re-
ports published in 152 studies, identifying 11 bacterial
pathogen genera including Bartonella (n =7,224), Leptospira
(n=7,032), Mycoplasma (n=2,113), Rickettsia (n=1,909),
Borrelia (n=1,508), Anaplasma (n=1,064), Coxiella
(n=1,038), Neorickettsia (n=494), Brucella (n=473), Ehr-
lichia (n=361), and Francisella (n=196) (Figure 2, Suppl.
Table 5). Pathogen presence was screened in 319 identified
bat species across 103 genera and 15 bat families. We provide
data summaries below but caution about pervasive taxo-
nomic and geographic sampling biases, which we account
for in our analyses.

3.1. Distribution of Bat-Associated Bacterial Pathogens be-
tween Host Families. The occurrence of at least one bacterial
pathogen genus was found in 15 bat families, across 77
genera and 215 species (Figure 3). A total of 4,351 positive
tests were reported, including molecular screening, mi-
croscopy, and serology. The highest number of positive tests
for at least one pathogen genus were reported from the
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FIGURE 2: Number of tests (1 =22,910) performed (including presence and absence data) for the detection of 11 bacterial pathogenic genera
across bat families. (Figure excludes data, when host identity was unreported).

families Phyllostomidae (n=1,384), Vespertilionidae
(n=900), and Pteropodidae (n=882). The highest diversity
of pathogen genera was in the family Vespertilionidae, in
which 11 bacterial genera were identified.

3.2. Detection Rate of Pathogens across Families. To analyze
detection rate, we only included the seven most frequently
tested pathogens (x> 1,000). Limited data are available on
Anaplasma infection in bats, but these data show the highest
detection rate was in the family Rhinolophidae (21% oc-
currence in tested samples). Bartonella showed a relatively
high detection rate in tested families, ranging from 7.3% in
Nycteridae to 37.4% in Miniopteridae and 38.5% in Pter-
opodidae (Figure 4; Suppl. Table 2). The Borrelia detection
rate ranged from 0% in the families Molossidae and Noc-
tilionidae to 33.3% in the families Natalidae and Pter-
opodidae. Coxiella was detected at the highest rate in the
family Molossidae (9.8%), whereas detection was lowest
(0%) in the families Noctilionidae, Rhinolophidae, and
Emballonuridae. Leptospira detection rate was highest in the
family Nycteridae (85.7%) and lowest in Rhinolophidae and
Noctilionidae (0%). Mycoplasma showed a high detection
rate in three families: Mormoopidae (60.8%), Phyllosto-
midae (53.1%), and Molossidae (43.4%). Lastly, Rickettsia
was detected across several families, though at low infection

rates, ranging from 0.6% to 6.7% in Molossidae and Ves-
pertilionidae, respectively (Figure 4; Suppl. Table 2). The
frequency of sampled species relative to the number of
species within a bat family shows a wide range (excluding
unsampled families), e.g., showing that the least frequently
sampled families are Pteropodidae (6%) and Hipposideridae
(5.5%) for Bartonella and Leptospira, respectively (Suppl.
Figures 2-7). For the four other pathogen genera with less
frequent testing (Brucella, Ehrlichia, Francisella, and Neo-
rickettsia), prevalence was generally low (<10%) in most
families, but Neorickettsia had moderately high prevalence
(30.4%) in Phyllostomidae (Suppl. Table 3).

Using phylogenetic meta-analysis that included random
effects for study, bat species, and phylogenetic covariance
and bat family as a fixed effect, we examined the amount of
variation in prevalence that exists across studies of the seven
most studied bacterial pathogens. We observed a high
amount of heterogeneity (I >80%) in prevalence estimates
for Bartonella, Leptospira, Mycoplasma, and Borrelia and
low to moderate heterogeneity (I° between 18-56%) in the
less frequently tested Rickettsia, Anaplasma, and Coxiella
(Suppl. Table 4). Heterogeneity in prevalence was driven
most by differences between studies and from the bat
phylogeny, with lower contributions from additional species
effects, for Bartonella, Leptospira, Anaplasma, and Coxiella;
differences between studies and additional species effects
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FiGure 3: Distribution of positive tests (1 =4,314) for bat-associated bacterial pathogens across bat families and bacterial pathogen genera.

(Figure excludes data, when host identity was unreported).

were greater contributors to heterogeneity than the bat
phylogeny for Mycoplasma, Rickettsia, and Borrelia (Suppl.
Table 4). For all pathogens except Coxiella, the Cochran’s Q
test for residual heterogeneity was significant (p <0.05) for
the models with only random effects included, indicating
that the sources of heterogeneity in pathogen prevalence
were not sufficiently explained with the random effects. We
included bat family as a fixed effect in the meta-analysis
along with random effects and found that family explained
some of the variance in prevalence for all pathogens except
Anaplasma, with pseudo-R* ranging from 11% for Coxiella
to 70% for Bartonella (Suppl. Table 4). However, Cochran’s
Q test for the family fixed effect was not significant (p > 0.05)
for all seven pathogens, indicating that significant differ-
ences in prevalence among bat families could not be de-
tected. Estimated prevalence from meta-analysis, accounting
for random effects and differences among families, generally
confirmed the bat families with the highest prevalence.
Following meta-analysis, among the families with at least 10
samples tested, Miniopteridae had the highest estimated
prevalence for Bartonella, Nycteridae for Leptospira, Phyl-
lostomidae for Mycoplasma, Vespertilionidae for Rickettsia,
Rhinolophidae for Anaplasma, Pteropodidae for Borrelia,
and Molossidae for Coxiella. However, the confidence in-
tervals following meta-analysis were much wider than the

Clopper—Pearson exact intervals (Suppl. Table 2). Cochran’s
Q test for residual heterogeneity for the mixed effects model
was significant for Bartonella, Leptospira, Mycoplasma,
Rickettsia, and Borrelia, indicating high remaining hetero-
geneity in prevalence among studies and species within
a given bat family (Suppl. Table 2).

3.3. Geographical Distribution of Bat-Associated Bacterial
Pathogens. Samples from 58 countries and four overseas
department and island states (French Guiana, Mayotte, New
Caledonia, and Réunion) reported the molecular testing of at
least one bacterial pathogen in bats. The highest number of
tests for at least one bacterial pathogen genus were reported
from Brazil (n=3,578), China (n=1,865), Hungary
(n=1,124), Madagascar (n=1,092), and Peru (n=987),
whereas the most positive tests were reported from Brazil
(n=415), Belize (n=2371), Australia (n=343), China
(n=336), and Peru (n = 324) (Suppl. Fig. 8). As for continents,
the highest number of bat species were tested in South
America (Figure 5). Sampling was unrepresentative in the
case of several pathogens in certain geographical regions. For
instance, Africa and Southeast Asia are largely neglected in
bacterial pathogen research compared to other regions, except
for Bartonella and Leptospira (Figure 5, Suppl. Figures 2-7).
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were included (i.e., PCR and qPCR).

3.4. Study Bias in Bat and Bacterial Pathogen Research. A
Spearman rank correlation suggested a strong study bias, as
the number of infected individuals positively correlated with
the number of publications in PubMed (n =104, df=102,
p =0.0001) (Figure 6).

4, Discussion

Wild animals serve as reservoirs of numerous potentially
zoonotic pathogens, and bats represent no exception. Even
though bacterial pathogens are ubiquitous in bats, limited
information exists about their distribution, zoonotic poten-
tial, and their pathological effects on their hosts, particularly
when compared to available information about bat-associated
viral pathogens. During this work, we found that the most
frequently detected bacterial pathogens in bats are Bartonella,
Leptospira, and Mycoplasma species. These pathogens rep-
resent 88.5% of all reported bacterial pathogen occurrence
across 15 bat families. Previous work has demonstrated that
Bartonella spp. show a high diversity across bats in several
host families [58]. Additionally, bats have played a key role in
the radiation of mammal-associated Bartonella species and
are suggested to be ancestral hosts of these pathogens [59].
Bartonella spp. are commonly detected not only in bats but
also in their ectoparasites [21, 23, 60-63]. Although the
vectors of Bartonella spp. are still unknown in bats, it has been
suggested that ectoparasitic bat flies (Nycteribiidae, Stre-
blidae) might be potential vectors [61, 64]. Bartonella spp. are
indeed common in bats, but their ubiquity is in part due to
a focus on this genus in surveillance studies.

Leptospira spp. are considered neglected but emerging
infectious pathogens. Nevertheless, there are an increasing
number of studies focusing on Leptospira occurrence in
bats, showing it as common and widespread [65, 66]. In
addition, Leptospira spp. also appear to be highly detectable
across host families, based on the findings of the current
work. Improved, targeted, and more widespread applica-
tion of Leptospira spp. diagnostics will increase our un-
derstanding of the distribution and diversity of this genus
in bats.

Mpycoplasma spp. are widespread both geographically
and across different mammalian orders [67], and are
commonly observed among bats [68-70]. However, it
generally shows a higher prevalence in vampire bats (Des-
modontinae) compared with other mammalian groups [67].
Nevertheless, our understanding of Mycoplasma presence
and diversity across bats is still limited, as about half of the
known bat families have still not been targeted in Myco-
plasma surveillance, and there is a large amount of het-
erogeneity in prevalence within and among sampled bat
species that is not fully understood.

In addition, several other (partly or entirely) pathogenic
bacterial taxa are largely unstudied in bats, such as Borrelia,
Francisella, Neorickettsia, Rickettsia, Brucella, and vector-
borne Yersinia species. Moreover, certain pathogenic taxa,
such as Chlamydiales (e.g., Chlamydia-like organisms and
Waddlia spp.), remain largely unexplored in bats. However,
some limited occurrences have been reported in bats or in
their ectoparasites [24, 68, 71-73]. A more complete un-
derstanding of these bacteria and potentially other species in
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bats requires additional focus and sampling including im-

proved primer design and metagenomic sequencing.
Opverall, strong sampling bias has been observed, both

across different bat taxa and geographies. We currently have

the most information about bacterial pathogen occurrence

in the families Phyllostomidae, Pteropodidae, and Ves-

pertilionidae, with the latter showing the highest diversity of
observed pathogenic genera. Roughly, 72.5% of the pathogen
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surveillance data come from these three bat families, which
represent about 66.9% of all known bat species. However,
even within these families, surveillance data are reported
from only about 22% of known bat species. The family
Vespertilionidae also represents the highest species diversity
compared to other bat families, with a worldwide distri-
bution, which might partly explain high pathogen diversity
within this family. Bat families with a small number of
species and a restricted geographical distribution are gen-
erally underrepresented in bacterial pathogen surveillance
studies, such as Megadermatidae, Natalidae, and Noctilio-
nidae. Additionally, no bacterial pathogen surveillance effort
has been reported for six further small bat families: Cistu-
gidae, Furipteridae, Rhinopomatidae, Mystacinidae, Myzo-
podidae, and Thyropteridae (see Suppl. Figures 2-7).
Knowledge on pathogen occurrence or diversity in these
species is entirely lacking. Furthermore, little or no data have
been reported from the Middle East, Central and South Asia,
and from the majority of African countries, even though
some of these areas host a high diversity of bats [74-76] (see
Suppl. Figures 2-7).

Geographic bias was also prominent, with limited
sampling for many bacterial pathogens in areas with the
highest bat diversity. Most positive tests were observed from
bats sampled in Africa; however, data were reported from
only a handful of countries, with the majority still without
any reported surveillance. Moreover, several pathogens have
not been tested in bats from the continent (e.g., Anaplasma);
therefore, conclusions regarding general prevalence cannot
be drawn. In addition, more sampling is needed from
understudied areas where bat diversity is generally high,
such as Africa, Central and South Asia, and Southeast Asia,
to reveal geographical patterns of pathogen diversity.

The phylogenetic meta-analysis that was performed for
Bartonella, Leptospira, Mycoplasma, Rickettsia, Borrelia, and
Coxiella also highlighted that much still needs to be done to
understand the factors that contribute to heterogeneity in
the prevalence of these pathogens across studies and bat
taxonomy. While additional studies with greater coverage of
bat species in different families and more testing of samples
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from species already covered in the database may help to
more accurately assess heterogeneity in prevalence across
bat species, there is also need for greater consistency and
documentation of sampling approaches and testing
methods. This will include more granular data on the sea-
sonality of sampling, the timing of sampling relative to the
breeding cycle of bat species, the exact location (with co-
ordinates) of sampling sites, and their descriptions (e.g., cave
versus tree roost). Some heterogeneity among studies is also
partly attributable to methodological variance. For example,
Bartonella, Borrelia, and Mycoplasma were tested in bat
blood (or urine in the case of Leptospira) in some studies and
in various tissues in other studies. Furthermore, a variety of
PCR platforms including conventional PCR, nested PCR,
and real-time PCR, and a diversity of gene targets were used
to detect the same pathogen genus across studies, and these
protocols vary in their sensitivity for pathogen detection.
Improved documentation and greater consistency in de-
tection methods [77, 78] could ameliorate some of the
lingering issues with heterogeneity in prevalence among
studies. Lastly, incorporation of species-level traits like body
size, diet, fecundity, lifespan, roosting behavior, and sociality
could help to explain some of the heterogeneity in preva-
lence among bat species and families and could improve
future meta-analysis efforts [79].

4.1. Zoonotic Potential of Bat-Associated Bacterial Pathogens.
Currently, we have limited understanding about the zoo-
notic potential of bat-borne bacterial pathogens. While there
is some evidence of spillover of bat-associated Bartonella and
Borrelia species, we lack sufficient surveillance to understand
the scale of these events and whether spillovers of other
pathogen genera occur. For instance, infection by Candi-
datus Bartonella mayotimonensis has been detected both in
humans and bats, suggesting that bats are the reservoirs of
this pathogen [28, 80-82]. Antibodies against Bartonella
rousetti from Egyptian fruit bats (Rousettus aegyptiacus)
were found in humans in Nigeria [25]. Also, high genetic
similarity was found between Bartonella genotypes in Eu-
ropean bats and bacteria detected in forest workers in
Poland [83, 84]. Other vector-borne pathogens, such as
Borrelia johnsonii, which was originally detected in the bat
tick Carios kelleyi [85, 86], was later found in a human
borreliosis patient also in the United States [87]. In another
recently reported case, a patient in Zambia was hospitalized
with high fever, days after visiting a cave and being bitten by
a soft tick. Subsequent investigation found a novel relapsing
tever Borrelia sp. in the patient and in soft ticks (Ornitho-
doros faini) and bats collected in the cave that the patient had
visited [27]. Finally, Leptospira bacteria closely related to the
human-pathogenic L. interrogans occur in bats [37, 88].
Clearly, a broad diversity of bat-associated bacterial path-
ogens are likely infecting humans, but the link to bats is often
not recognized.

4.2. Transmission Routes of Vector-Borne Bacterial Pathogens
in Bats. Transmission routes in vector-borne bat-associated
bacterial pathogens remain largely unclear. These pathogens
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are often detected in ectoparasites of bats, such as Ana-
plasma and Ehrlichia in ticks, mites, and bat flies [21, 89-92];
Bartonella in bat flies, fleas, ticks, mites, and bat bugs
[21, 23, 60, 63, 80, 85, 93, 104]; Borrelia fainii, Borrelia
johnsonii, Borrelia miyamotoi, and other Borrelia spp. in
ticks [29, 85, 86, 92, 105-107]; Coxiella in ticks [108]; My-
coplasma in bat flies and ticks [21, 26, 109]; and Rickettsia in
bat flies, fleas, mites, and ticks [21, 85, 90, 92,
95, 104, 107, 110-118]. While the presence of potentially
zoonotic bacterial pathogens in bat-associated ectoparasites
is commonly detected, we still have little understanding
about their role in pathogen transmission due to the lack of
controlled experimental infection studies that show the
potential of these vectors as competent hosts for trans-
mission for any of these pathogens in bats [119, 120].
Additionally, pathogen surveillance data are not suffi-
cient to reliably prove that the parasite is capable of
transmission, as it is currently not possible to determine
whether the presence of the bacteria in the residual
bloodmeal is from an infected bat or the bacteria are truly
replicating in the vectors. There may also be some genotypes
or species within these pathogen genera that are present as
endosymbionts of vectors (e.g., Coxiella, Rickettsia, and
Francisella) that may not be transmissible to host bats. In
addition, the transmission modes of certain pathogens (e.g.,
Coxiella, Leptospira, and Mycoplasma species) are currently
unknown in bats. Ectoparasite and pathogen co-occurrence
data may contribute to our understanding of parasite vec-
torial potential. A previous study showed that ectoparasite
load and vector-borne Bartonella occurrence may be posi-
tively correlated in bats [82], although another study did not
find this correlation [121]. Furthermore, other transmission
modes, such as direct contact with body fluids (e.g., Bar-
tonella is detectable in bat saliva and feces [121]), or vertical
transmission of these pathogens (e.g., mother-to-offspring
transmission of Bartonella in rodents [122, 123] or within
ectoparasites [124]) are possible but still remain unexplored.

4.3. Ecological and Demographic Drivers of Pathogen Oc-
currence and Transmission. Only limited data are available
that explore the drivers of bacterial pathogen occurrence and
transmission in bats. Studies have showed that Leptospira
infection in bats is associated with roost type, with higher
prevalence in human-made structures [88], and is syn-
chronized with the reproductive cycle of bats, showing an
infection peak during late pregnancy and two months after
the birth pulse [35]. Peaks in bat-associated virus shedding
have also been shown to be affected by reproductive cycles
[125]. Previous works have shown a higher Bartonella
prevalence in large, male, and nonreproductive vampire
bats, and in bats that feed on blood, when compared to bats
with other diets [121, 126]. Furthermore, the Bartonella
infection rate was higher in bat flies collected from bats
roosting in caves rather than in buildings or trees [62, 104],
suggesting that infection may be affected by roost type.
Additionally, Mycoplasma prevalence was generally higher
in vampire bats (compared to other bats and wildlife spe-
cies), as well as in bat species with larger body sizes and

larger colony sizes [67, 79]. More systematic collection of
metadata on ecological and environmental covariates, bat
host traits, the presence and behavior of ectoparasites, and
bat health status (e.g., immunological parameters, body
condition) is needed to understand predictors of bacterial
infection in bats.

4.4. Pathogenicity of Bacterial Pathogens in Bats. Our un-
derstanding regarding the pathogenicity of bacterial path-
ogens in bats is still limited. We frequently operate under the
widely accepted and often true assumption that bats expe-
rience no apparent disease from the pathogens they carry
[127, 128]. Nevertheless, there are notable exceptions, such
as in the cases of Tacaribe virus, Lloviu filovirus, and white-
nose syndrome, which can cause individual or mass mor-
tality in infected populations [17, 18, 129, 130]. Besides
documented mass mortality events, assessments of bat
health parameters in the field are not always recorded, and
no widely accepted protocol exists. Therefore, it is chal-
lenging to determine whether there is consistent morbidity
or mortality associated with bacterial infections in wild bat
populations. Limited evidence is available about the path-
ogenicity of bacterial infections in bats, such as the case of
fatal borreliosis in a bat found in the United Kingdom [131],
or the mass mortality events associated with enteric Yersinia
infection in both captive and wild bats [132, 133]. Post-
mortem examination of deceased individuals has shed light
on the cause of death in some European bats [134], with
systemic infections and septicemia caused by Pasteurella
multocida, Enterococcus faecalis, Enterococcus faecium, and
Staphylococcus aereus as a frequent clinical finding, often
following traumatic injury. Another retrospective study on
captive bats observed frequent bacterial infections affecting
reproductive and haemolymphatic organs [135]. Develop-
ment of better biomarkers of health status for bats in the field
could challenge assumptions about the tolerance of bats for
all types of infections and could aid in predicting when
bacterial and viral shedding events might occur [136].
Opverall, bacterial pathogens might contribute to significant
morbidity and mortality in bats, both in captivity and in
nature. However, our current knowledge is scarce about
these processes and requires more attention.

4.5. Enteric Bacterial Pathogens of Bats. Although the main
focus of this work was on nonenteric bat-associated bacterial
pathogens, there has also been great development in the
study of enteropathogens of bats. Enteropathogens are
normally found in the gastrointestinal tract of the host and
may potentially shed through body fluids and feces. Po-
tentially zoonotic enteropathogenic bacteria have been de-
tected in bats, such as Escherichia coli and Campylobacter,
Salmonella, and Yersinia species [22, 137]. However, our
knowledge on the scale of disease outbreaks and mortality by
enteropathogens is scarce in nature, there is some evidence
that they may cause mass mortality in bats, such as in the
case of Yersinia enterocolitica [133]. Furthermore,
Y. pseudotuberculosis may cause (mass) mortality in captive
bats [132, 138, 139]. Generally, enteric Yersinia species are
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frequently detected in wild-caught bats and are suspected to
be pathogenic to them based on histopathologic evidence
[22, 134, 140].

Escherichia coli is commonly found in humans, and most
strains are nonpathogenic [141]. However, some animal
species, such as bats, host human-pathogenic strains in high
diversity [142, 143], with emerging evidence indicating that
some strains are antibiotic resistant [144-146], which may
have veterinary or human medicine origins [147].

Some Salmonella and Campylobacter species may cause
gastrointestinal disease both in animals and in humans.
Several serotypes have been detected in bats, both in healthy
and sick individuals [137, 142, 148, 149]. Furthermore,
human-associated Salmonella and Campylobacter serotypes,
such as Salmonella typhi and Campylobacter jejuni have been
isolated from bats [137, 150, 151].

Opverall, bat-associated enteropathogenic bacteria may
pose a health risk to humans and domestic animals. Nev-
ertheless, the scale of this risk is unknown under natural
circumstances. Lastly, as bats possess a high diversity of
pathogenic and nonpathogenic enteric bacteria, paired with
bats’ diverse ecological and physiological traits, they may be
an ideal model system to understand mammal microbiome
evolution, potentially contributing to public health advances
[152].

4.6. Interactions between Pathogens. Ecological interactions
between pathogens may be neutral, facultative (one infection
increases the probability of another), or competitive (one
infection decreases the probability of another). As an ex-
ample, bacteria naturally occurring on bats have been shown
to inhibit the growth of the pathogenic fungus Pseudo-
gymnoascus destructans (causative agent of white-nose
syndrome) [153]. Furthermore, Leptospira and para-
myxovirus coinfections frequently occur in bats but without
evidence of a directional interaction between the two
pathogens [65]. Additionally, good evidence suggests mul-
tiple interactions of differing strength and direction (fac-
ultative vs. competitive) can occur in other wildlife systems
[154, 155]. As we have little understanding of potential
interactions between bacterial pathogens and other patho-
gens of bats, such as viruses, fungi, and ectoparasites, there
are opportunities for future studies to address these
questions.

4.7. Future Directions in Bacterial Pathogen Research in Bats.
Identification of reservoir hosts using machine learning has
been successfully carried out with high accuracy, such as
identifying zoonotic pathogens of rodents [156] or bat
reservoirs of filoviruses [157] and henipaviruses [158]. In
addition, data-driven identification of vector species of
a wide variety of zoonotic diseases has also been performed,
evaluating the vectorial capacity of different mosquito and
tick species [159, 160]. Usage of these predictive tools could
help to prioritize sampling of bat species and their ecto-
parasites for surveillance of bacterial pathogens. Addition-
ally, the development and increasing accessibility of accurate
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molecular epidemiological methods, such as using genomic
and environmental DNA (eDNA) approaches, can con-
tribute to bacterial pathogen surveillance on a larger geo-
graphic and taxonomic scale in bats [161-163]. Furthermore,
using the combination of advanced molecular tools (e.g.,
metagenomic sequencing) and noninvasive collection
methods (e.g., eDNA) could not only improve pathogen
surveillance but also contribute to the conservation of the
targeted species [63, 164, 165]. Additionally, building natural
history collections can help the discovery of a many pre-
viously undescribed parasites and pathogens, contributing
to the understanding of disease emergence and population
dynamics over time [166, 167]. The collection of noninvasive
samples should be prioritized to minimize existing threats
towards threatened species [165]. Additionally, the devel-
opment of technological tools such as microchips, PIT tags,
and increasingly small GPS units to track individual bats
could help us build knowledge on how frequently in-
dividuals are becoming infected (capture-recapture) and
how animal movements and contact rates are contributing
to transmission across space [168-170].

5. Conclusions

Several bat-associated bacterial pathogens have the potential
to infect humans, likely due to close contact with infected bat
hosts or with their ectoparasites. Bat-associated ectopara-
sites, such as ticks, can occasionally be found feeding on
humans and other nonbat species. However, spillover events
are seemingly rare or remain undocumented due to a lack of
adequate surveillance. More information on pathogen oc-
currence, diversity, and seasonality is needed to successfully
anticipate and prevent these events. Overall, there is still
a lack of knowledge on several pathogenic bacterial taxa in
bats and the reservoir potential of these animals. More
targeted surveillance is urgently needed to better understand
the ecoepidemiological role of bat-associated bacterial
pathogens in disease maintenance and transmission. Lastly,
pathogen diversity is likely connected to host diversity,
therefore, improved sampling of those underrepresented
areas and hosts are urgently needed. Increased access to
research funding should be provided to researchers based in
the Global South to ensure efficient and continuous sur-
veillance of bacterial pathogens in underrepresented areas
(e.g., sub-Saharan Africa, South and Southeast Asia, and
South America), which could help to prevent the potential
spillover of zoonotic bacterial pathogens, while prioritizing
host conservation [171-174].
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Supplementary Materials

Supplementary Fig. 1: PRISMA flowchart diagram for sys-
tematic reviews indicating the pathogen screening process in
publications [41]. Supplementary Fig. 2: geographical and
taxonomic distribution of reported bat hosts of Bartonella
bacteria. (A) Biogeographical patterns of bat families,
sampling, and Bartonella host status. (B) Bat taxonomic
diversity and Bartonella testing results. Data were compiled
from field studies involving detection of Bartonella in wild
bats. “Described” refers to the number of taxonomically
described bat species per family based on the expert-curated
Bat Species of the World database (Simmons and Cirranello,
2022). Supplementary Fig. 3: geographical and taxonomic
distribution of reported bat hosts of Leptospira bacteria. (A)
Biogeographical patterns of bat families, sampling, and
Leptospira host status. (B) Bat taxonomic diversity and
Leptospira testing results. Data were compiled from field
studies involving detection of Leptospira in wild bats.
“Described” refers to the number of taxonomically described
bat species per family based on the expert-curated Bat
Species of the World database (Simmons and Cirranello,
2022). Supplementary Fig. 4: geographical and taxonomic
distribution of reported bat hosts of Mycoplasma bacteria.
(A) Biogeographical patterns of bat families, sampling, and
Mycoplasma host status. (B) Bat taxonomic diversity and
Mycoplasma testing results. Data were compiled from field
studies involving detection of Mycoplasma in wild bats.
“Described” refers to the number of taxonomically described
bat species per family based on the expert-curated Bat
Species of the World database (Simmons and Cirranello,
2022). Supplementary Fig. 5: geographical and taxonomic
distribution of reported bat hosts of Rickettsia bacteria. (A)
Biogeographical patterns of bat families, sampling, and
Rickettsia host status. (B) Bat taxonomic diversity and
Rickettsia testing results. Data were compiled from field
studies involving detection of Rickettsia in wild bats. “De-
scribed” refers to the number of taxonomically described bat
species per family based on the expert-curated Bat Species of
the World database (Simmons and Cirranello, 2022). Sup-
plementary Fig. 6: geographical and taxonomic distribution
of reported bat hosts of Anaplasma bacteria. (A) Bio-
geographical patterns of bat families, sampling, and Ana-
plasma host status. (B) Bat taxonomic diversity and
Anaplasma testing results. Data were compiled from field
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studies involving detection of Anaplasma in wild bats.
“Described” refers to the number of taxonomically described
bat species per family based on the expert-curated Bat
Species of the World database (Simmons and Cirranello,
2022). Supplementary Fig. 7: geographical and taxonomic
distribution of reported bat hosts of Borrelia bacteria. (A)
Biogeographical patterns of bat families, sampling, and
Borrelia host status. (B) Bat taxonomic diversity and Borrelia
testing results. Data were compiled from field studies in-
volving detection of Borrelia in wild bats. “Described” refers
to the number of taxonomically described bat species per
family based on the expert-curated Bat Species of the World
database (Simmons and Cirranello, 2022). Supplementary
Fig. 8: geographical distribution of all tested bat individuals
(A), and individuals that were positive for at least one
pathogen (B) by country. (Supplementary Materials)
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