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Rapid and comprehensive data sharing is vital to the transparency and actionability of wildlife infectious 
disease research and surveillance. Unfortunately, most best practices for publicly sharing these data 
are focused on pathogen determination and genetic sequence data. Other facets of wildlife disease 
data – particularly negative results – are often withheld or, at best, summarized in a descriptive table 
with limited metadata. Here, we propose a minimum data and metadata reporting standard for wildlife 
disease studies. Our data standard identifies a set of 40 data fields (9 required) and 24 metadata fields (7 
required) sufficient to standardize and document a dataset consisting of records disaggregated to the 
finest possible spatial, temporal, and taxonomic scale. We illustrate how this standard is applied to an 
example study, which documented a novel alphacoronavirus found in bats in Belize. Finally, we outline 
best practices for how data should be formatted for optimal re-use, and how researchers can navigate 
potential safety concerns around data sharing.

Introduction
Infectious disease is a widely studied topic in wildlife biology and ecosystem science1. Every year, countless 
scientific studies report new data on the prevalence of macroparasites (e.g., ticks and tapeworms) and micropar-
asites (e.g., bacteria, viruses, and other classically defined “pathogens”), hereafter “parasites” for simplicity2, in 
wild animals. These datasets are incredibly valuable, and – especially in aggregate – can be used to test ecolog-
ical theory3; monitor the impacts of climate change4,5, land use change6,7, and biodiversity loss8; and even track 
emerging threats to human and ecosystem health9–11.

Disease ecologists engaged in synthesis research are often faced with reconciling datasets that vary greatly 
in their scope and granularity. For example, many studies do not report information about sampling effort over 
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space and time, and may not even report the location of sampling sites9,12. Similarly, researchers often collect 
a wealth of host-level data that might help to understand infection processes (e.g., sex, age, life stage, or body 
size). However, many studies only provide summary statistics for parasite prevalence across different sites, spe-
cies, or time points, which cannot be disaggregated back to the host level. For example, out of 110 studies we 
recently reviewed9 that have tested wild bats for coronaviruses, 96 only reported data in a summarized format 
(see Supplemental File 4). When studies did share individual-level data, they often did so only for positive results 
(11 of 14 studies), making it impossible to compare prevalence across populations, years, or species.

To address these issues, wildlife disease ecology would benefit from best practices for dataset standardization 
and sharing, similar to those that have been developed for other types of foundational data in the biological 
sciences13–15. Data standards facilitate the sharing, (re)use, and aggregation of data by humans and machines 
through the use of a common structure, set of properties, and vocabulary. Here, we designed a simple and 
flexible minimum data standard that is intended to be accessible to a range of practitioners, while providing 
sufficient structure for large-scale data analysis and meeting expectations for Findable, Accessible, Interoperable, 
and Reusable (FAIR) research practices16. We describe the required properties and structure for wildlife disease 
data that conform to the standard, building on a set of similar templates for sharing datasets related to arthropod 
disease vectors17–20 that focus on utility and ease of use. We document the development of the data standard, 
show how it can be applied to a simple dataset reporting coronavirus detection in wild bats, and suggest addi-
tional best practices for data sharing.

Methods
Our goal in this project was to develop guidelines for how researchers can collect and share standardized, 
well-documented wildlife disease datasets, with a focus on documenting sampling methods and findings. We 
developed our data standard based on: (i) experience conducting and publishing wildlife disease research, and 
collaborating with government programs doing the same; (ii) common practices already followed by most sci-
entists in the literature when sharing disaggregated data, including the decisions made by major data sources 
such as the USAID PREDICT 2 project’s data release21; (iii) best practices for sharing ecological data that min-
imize room for error or loss of data22–27; and (iv) interoperability with standards used by other platforms, such 
as the Global Biodiversity Information Facility (GBIF)27. We assumed that parasite genetic sequence data and 
associated types (e.g., metatranscriptomes) are already widely archived on platforms like NCBI’s GenBank and 
Sequence Read Archive (SRA), following a different set of best practices, and are unlikely to be stored in the 
same data structure as we describe here.

The guiding philosophy of the data standard is that researchers should share their raw wildlife disease data 
in a format that data scientists refer to as “rectangular data” or “tidy data”28, where each row corresponds to a 
single measurement, here meaning the outcome of a diagnostic test. Tests, samples, and individual animals can 
each have many-to-many relationships due to common practices such as repeated sampling of the same animal, 
confirmatory tests, or sequencing of samples that test positive, and pooling of samples (sometimes from multiple 
animals and locations) for a single test. Based on this, there are three main categories of information collected: 
sample data, host animal data, and the parasite data itself, including both test results and any data characterizing 
a parasite once it has been detected (e.g., GenBank accession). We developed the fields associated with each 
of these categories through an iterative process using real-world data, as part of the ongoing development of a 
new dedicated platform for wildlife disease data, the Pathogen Harmonized Observatory (PHAROS) database 
(pharos.viralemergence.org). Project-level metadata was developed using the DataCite Metadata Schema as rec-
ommended by the Generalist Repository Ecosystem Initiative29,30.

Results
When to use the data standard. Before applying this standard, we encourage researchers to verify that 
their dataset describes wild animal samples that were examined for parasites, accompanied by information on 
the diagnostic methods used and the date and location of sampling. Examples of project types that would be 
suitable for the data standard include, but are not limited to: the first report of a parasite in a wildlife species31; 
investigation of a mass wildlife mortality event32; longitudinal, multi-site sampling of multiple wildlife species for 
a parasite33; regular parasite screening in a single monitored wildlife population34; screening of wildlife during 
an investigation of a human disease outbreak35; or a passive surveillance program that tests wildlife carcasses 
submitted by the public36.

Some closely-related types of data are better documented using a different data standard: for example, records 
of free-living macroparasites (e.g., tick dragging data) can be stored in Darwin Core format like any other biodi-
versity dataset27,37, or can adhere to the MIReAD (Minimum Information for Reusable Arthropod Abundance 
Data) data standard, which was designed with disease vector surveillance in mind19. Similarly, arthropod blood 
meal datasets can follow another recently-published data standard18. Finally, environmental monitoring datasets 
(e.g., soil, water, or air microbiome metagenomics) not associated with a specific animal under direct or indirect 
observation should also be handled following other best practices38,39.

the data standard. Our proposed data standard includes 40 core fields (11 related to sampling, 13 related 
to the host organism being sampled, and 16 related to the parasite itself) and 24 fields related to project metadata. 
The contents of the 40 core fields and their interpretation are described in Tables 1–3 (split into three tables for 
the reader’s ease).

Many of the fields are open text, and this flexibility is intentional. The diversity of collection, detection, and 
measurement methods that researchers use is likely to be beyond the scope of a single controlled vocabulary. 
Restrictive values may therefore limit the adoption of the data standard by the community. To that end, we 
have elected to leave these fields as open text in this version of the data standard, but may restrict values as the 
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standard matures. Nevertheless, we encourage users to take advantage of existing controlled vocabularies (see 
Supporting Information) when using this standard.

In Table 4, we show how a real, previously published dataset40 could be formatted using the data standard. 
The example dataset describes a single vampire bat (BZ19-114) tested for coronaviruses in Belize in 2019: a 
rectal swab tested negative, while an oral swab tested positive, leading to the identification of a novel alphacoro-
navirus. All mandatory and relevant fields are shown, and cells are left blank if they do not apply (e.g., parasite 
identity is always empty for negative test results). The data in Table 4 are only a subset of the full dataset, which 
is shared in full on the PHAROS platform (project: prjRPayEvMecN). While project-level metadata will likely 
be captured upon deposit in a scientific data repository, we include metadata for the example project in Table S4 
(see Supporting Information).

How to use the data standard. For researchers who want to apply the data standard to their own projects, 
we recommend following four basic steps:

Variable Type Required Descriptor

Sample ID String  ✓

A researcher-generated unique ID for the sample: usually a unique string of both characters and integers 
(e.g., “OS BZ19-114” to indicate an oral swab taken from animal BZ19-114; see worked example below), 
to avoid conflicts that can arise when datasets are merged with number-only notation for samples. Ideally, 
sample names should be kept consistent across all online databases and physical resources (e.g., museum 
collections or project-specific sample archives).

Animal ID String
A researcher-generated unique ID for the individual animal from which the sample was collected: usually 
a unique string of both characters and integers (e.g., “BZ19-114” to indicate animal 114 sampled in 2019 in 
Belize). Ideally, animal names should again be kept consistent across online databases and physical resources. 
Can be left blank in cases where animals are not individually identified (e.g., pooled mosquito testing).

Latitude Number ✓ Latitude of the collection site in decimal format. Equivalent to dwc:decimalLatitude.

Longitude Number ✓ Longitude of the collection site in decimal format. Equivalent to dwc:decimalLongitude.

Spatial uncertainty Number Coordinate uncertainty from GPS recordings, post-hoc digitization, or systematic alterations (e.g., jittering 
or rounding) expressed in meters. Equivalent to dwc:coordinateUncertaintyInMeters.

Collection day Integer The day of the month on which the specimen was collected. Equivalent to dwc:day.

Collection month Integer The numeric month in which the specimen was collected. Equivalent to dwc:month.

Collection year Integer The year in which the specimen was collected. Equivalent to dwc:year.

Sample collection method String ✓ The technique used to acquire the sample and/or the tissue from which the sample was acquired (e.g. “visual 
inspection”; “swab”; “wing punch”; “necropsy”).

Sample collection body part String Part of the animal body that samples are generated or collected from (e.g., “rectum”; “wing”).

Sample material String Organic tissue or fluid being collected (e.g., “liver”; “blood”; “skin”; “whole organism”).

Table 1. Data standard field definitions (part 1): sampling information. Equivalent Darwin Core terms are 
noted in the descriptor. Data types align to those used in the JSON Schema specification.

Variable Type Required Descriptor

Host identification String ✓
The Linnaean classification of the animal from which the sample was collected, reported at the lowest 
possible level (ideally, species binomial name: e.g., “Odocoileus virginianus” or “Ixodes scapularis”). 
As necessary, researchers may also include an additional field indicating when uncertainty exists in 
the identification of the host organism (see “Adding new fields”). Equivalent to dwc:scientificName.

Organism sex String The sex of the individual animal from which the sample was collected. Equivalent to dwc:sex.

Live capture Boolean
Whether the individual animal from which the sample was collected was alive at the time of capture. 
Should be TRUE or FALSE; lethal sampling should be recorded as TRUE as this field describes the 
organism at the time of capture.

Host life stage String The life stage of the animal from which the sample was collected (as appropriate for the organism) 
(e.g., “juvenile”, “adult”). Equivalent to dwc:lifeStage.

Age Number The numeric age of the animal from which the sample was collected, at the time of sample collection, 
if known (e.g., in monitored populations).

Age units String The units in which age is measured (usually years). Should always be provided if age is provided.

Mass Number The mass of the animal from which the sample was collected, at the time of sample collection.

Mass units String The units that mass is recorded in (e.g., “kg”). Should always be provided if mass is provided.

Length Number The numeric length of the animal from which the sample was collected, at the time of sample 
collection.

Length measurement String The axis of measurement for the organism being measured (e.g., “snout-vent length”; “wing length”; 
“primary feather”). Should always be provided if length is provided.

Length units String The units that length is recorded in (e.g., “meters”). Should always be provided if length is provided.

Organism quantity Number A number or enumeration value for the quantity of organisms. Equivalent to dwc:organismQuantity.

Organism quantity units String The units that organism quantity is recorded in (e.g. “individuals”, “kg”). Should always be provided if 
organism quantity is provided. Equivalent to dwc:organismQuantityType.

Table 2. Data standard field definitions (part 2): host identification and traits. Equivalent Darwin Core terms 
are noted in the descriptor. Data types align to those used in the JSON Schema specification.

https://doi.org/10.1038/s41597-025-05332-x
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 1. Fit for purpose. The dataset or data to be collected describe wild animal samples that were examined for 
parasites. Each record must include the host identification, diagnostic methods used to identify parasites, 
outcome of the diagnostic method, parasite identification, and the date and location of sampling.

 2. Tailor the standard. Researchers should consult the list of fields in Tables 1–3 and identify (i) which 
fields beyond the required fields are applicable to their study design, (ii) which ontologies or controlled 

Variable Type Required Descriptor

Detection target String ✓

The taxonomic identity of the parasite being screened for in the sample. This will often be coarser than 
the identity of a specific parasite identified in the sample: for example, in a study screening for novel bat 
coronaviruses, the entire family Coronaviridae might be the target; in a parasite dissection, the targets 
might be Acanthocephala, Cestoda, Nematoda, and Trematoda. For deep sequencing approaches (e.g., 
metagenomic and metatranscriptomic viral discovery), researchers should report each alignment 
target used as a new “test” to maximize reporting of negative data, or alternatively, select a subset that 
reflect specific study objectives and the focus of analysis (e.g., specific viral families). Equivalent to 
dwc:associatedOccurrences.

Detection method String ✓ The type of test performed to detect the parasite or parasite-specific antibody (e.g., “PCR”, “ELISA”).

Forward primer sequence String The sequence of the forward primer used for parasite detection (e.g., for a pan-coronavirus primer: 5’ 
CDCAYGARTTYTGYTCNCARC 3’). (Strongly encouraged if applicable, e.g., for PCR.)

Reverse primer sequence String The sequence of the reverse primer used for parasite detection (e.g., 5’ RHGGRTANGCRTCWATDGC 
3’). (Strongly encouraged if applicable, e.g., for PCR.)

Gene target String The parasite gene targeted by the primer (e.g., “RdRp”, e.g., for PCR.).

Primer citation String Citation(s) for the primer(s) (ideally doi, or other permanent identifier for a work, e.g. PMID).

Probe target String Antibody or antigen targeted for detection. (Strongly encouraged if applicable, e.g., for ELISA.)

Probe type String Antibody or antigen used for detection. (Strongly encouraged if applicable, e.g., for ELISA.)

Probe citation String Citation(s) for the probe(s) (ideally doi, or other permanent identifier for a work, e.g. PMID).

Detection outcome String ✓ The test result (i.e., “positive”, “negative”, or “inconclusive”). To avoid ambiguity, these specific values 
are suggested over numeric values (“0” or “1”). Equivalent to dwc:occurrenceStatus.

Detection measurement Number Any numeric measurement of parasite detection that is more detailed than simple positive or negative 
results (e.g., viral titer, parasite counts, sequence reads).

Detection measurement units String Units for quantitative measurements of parasite intensity or test results (e.g., “Ct”, “TCID50/mL”, or 
“parasite count”).

Parasite identification String ✓
The identity of a parasite detected by the test, if any, reported to the lowest possible taxonomic level, 
either as a Linnaean binomial classification or within the convention of a relevant taxonomic authority 
(e.g., “Borrelia burgdorferi” or “Zika virus”). Parasite identification may be more specific than 
detection target.

Parasite ID String
A researcher-generated unique ID for an individual parasite (primarily useful in nested cases where 
this ID is used as an animal ID in another row, such as pathogen testing of a blood-feeding arthropod 
removed from a vertebrate host).

Parasite life stage String The life stage of the parasite from which the sample was collected (as appropriate for the organism) 
(e.g., “juvenile”, “adult”).

GenBank accession String
The GenBank accession for any parasite genetic sequence(s). Accession numbers or other identifiers 
for related data stored on another platform should be added in a different field (e.g. GISAID Accession, 
ImmPort Accession). Equivalent to dwc:otherCatalogNumbers.

Table 3. Data standard field definitions (part 3): detection methods and parasite identification. Equivalent 
Darwin Core terms are noted in the descriptor. Data types align to those used in the JSON Schema specification.

Data table part 1 (see definitions in Table 1)

Sample ID Animal ID Latitude Longitude
Collection 
day

Collection 
month

Collection 
year

Sample 
collection 
method

Sample 
collection 
body part

1 OS BZ19-95 BZ19-114 17.7643 −88.6521 23 04 2019 Swab Mouth

2 RS BZ19-95 BZ19-114 17.7643 −88.6521 23 04 2019 Swab Rectum

Data table part 2 (see definitions in Table 2)

Host identification Organism sex Live capture
Host life 
stage Mass

Mass 
units

1 Desmodus rotundus male TRUE subadult 0.023 kg

2 Desmodus rotundus male TRUE subadult 0.023 kg

Data table part 3 (see definitions in Table 3)

Detection target Detection method
Gene 
target Primer citation

Detection 
outcome Parasite identification

GenBank 
accession

1 Coronaviridae semi-nested PCR RdRp 10.3390/v9120364 positive Alphacoronavirus OM240578

2 Coronaviridae semi-nested PCR RdRp 10.3390/v9120364 negative

Table 4. An example dataset describing test results for two samples collected from one animal, documented 
using the minimum data standard. This table is divided into three parts that correspond to data standard field 
definitions (Tables 1–3). In practice, this would be a single table with two rows (see Supplemental File 3).

https://doi.org/10.1038/s41597-025-05332-x
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vocabularies may be appropriate for free text fields, and (iii) whether additional fields are needed.
 3. Format the data. Template files in.csv and.xlsx format are available in both the supplement of this paper 

and from GitHub (github.com/viralemergence/wdds).
 4. Validate the data. We have provided both a JSON Schema that implements the standard, and a simple R 

package (available from GitHub at github.com/viralemergence/wddsWizard) with convenience functions 
to validate data and metadata against the JSON Schema.

 5. Share the data. Researchers should make their data available in a findable, open-access generalist reposito-
ry (e.g., Zenodo) and/or specialist platform (e.g., the PHAROS platform).

We discuss best practices for some of these steps in greater depth below.

Best practices for flexibility and extensibility. Although our data standard is intended to capture a 
minimal set of information, not all fields are applicable to every study design. For example, studies that use PCR 
as a diagnostic method have different applicable fields (“Forward primer sequence,” “Reverse primer sequence,” 
“Gene target,” “Primer citation”) than those using ELISA (“Probe target,” “Probe type,” “Probe citation”; see 
Table 3). Similarly, some studies that use a pooled testing approach may leave the “Animal ID” field blank, because 
animals are not individually identified by researchers (e.g., testing of mosquito pools for arboviral diseases); in 
other cases, a pooled test may be linked to multiple Animal ID values, and researchers can provide associated 
metadata on individual animals in a supplemental file (see Fig. 1).

Some datasets may not be able to meet a comprehensive standard for documentation. When data are missing 
or fields are inapplicable, researchers should leave fields or cells blank instead of using placeholder values like 
“NA”41. For example, in some projects, limited funding or study protocols may preclude all captured animals 
from being sampled or all samples from being tested. Researchers might therefore include a mix of records of ani-
mals or samples with no attached test data (i.e., leaving “Detection outcome” blank). Similarly, archival samples 
that are rescued from old projects, or older museum specimens that are sampled for parasites42, may not always 
have complete date information, leading to “Collection day” and “Collection month” being left blank. We encour-
age researchers to adapt our data standard to their specific purposes and, as appropriate, to consider sharing their 
data in multiple applicable formats. For example, in the previous example, researchers might choose to both share 
their test results on the PHAROS platform and share a more comprehensive record of all sampling on Zenodo.

Researchers may also wish to include additional fields beyond the minimum data standard to share other 
kinds of information. For example, researchers might add fields for “Health status” (example values: “healthy”; 
“sick”; “injured”) or “Reproductive status (“pregnant”; “lactating”), or might use an an all-purpose “Notes” col-
umn to flag unusual records or non-standardized information about sampling (e.g., the circumstances under 
which a dead animal was found, such as opportunistic roadkill collection). Similarly, in cases where findings are 
particularly sensitive for public health or economic reasons, researchers might consider including some guid-
ance on how to interpret them in the data itself. For example, the data shared by the USAID PREDICT 2 project 
includes a field called “Interpretation,” which provides guidance such as this disclaimer on a positive test result: 
“[The virus detected in this sample] is the known ebolavirus, Bombali virus, detected in an Angolan free-tailed 
bat. This virus has previously been found in bats in Sierra Leone as part of the PREDICT project. Further char-
acterization is ongoing to understand the zoonotic potential of this virus.”

Best practices for sharing (and withholding) data. When using the data standard, we suggest that 
researchers should follow scientific conventions and best practices for data science, such as: reporting measure-
ments in metric units; reporting taxonomic information at the most granular level possible for both the host and 
parasite; and leaving empty and non-applicable cells blank, rather than assigning a placeholder such as “NA”41. 
Researchers should also ensure that their manuscript comprehensively describes all important aspects of sam-
pling methodology, such as the circumstances (e.g., systematic and planned sampling versus opportunistic col-
lection of unusual carcasses), how animal taxonomy was determined (e.g., expert opinion based on morphology 
versus DNA barcoding), and how samples were prepared (e.g., specific products or kits used, or specific details 
about the methods used in parasitological dissections). These details will often be the same for each individual 
row of data, so we exclude them from the template. However, interpreting a study’s data correctly may still depend 
on these data being available. Researchers should also ensure that their study documents any relevant epidemi-
ological observations (e.g., unusual disease presentation or nearby indicators of human-wildlife contact such as 
hunting traps, farms, or sewage discharge). Finally, whenever possible, researchers should also share all sequence 
data in an open repository.

As with other kinds of biodiversity data43,44, sharing wildlife disease data paired with high-resolution location 
data can sometimes be unsafe or inadvisable. For example, sharing the location of a bat roost where viruses have 
been detected may lead to animal culling, which in turn increases the risk of viral exposure for local human 
communities45,46. There may also be biosafety or biosecurity risks associated with location data, depending on 
the characteristics of the parasite in question; for example, anthrax spores can persist at a carcass site for several 
years47,48. In sensitive cases, researchers could consider truncating longitude and latitude values, or, potentially, 
jittering records with random noise. They should then carefully and clearly document the obfuscation process; 
guidance on this practice exists for other kinds of biodiversity data49. In some cases, this obfuscation may still 
be insufficient to prevent malicious use50. In high-risk cases, journal editors should work closely with authors to 
ensure that neither the manuscript itself nor any supplementary data have a significant potential to cause harm.

Best practices for publishing datasets. Published data should be stored in commonly used, 
non-proprietary flat file formats, like comma-separated values (i.e.,.csv with UTF-8 encoding and a period deci-
mal separator), to increase accessibility, interoperability, and utility. Non-proprietary file formats increase access 
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by removing the requirement to have a particular piece of software to open a file. Formats like .csv can also be 
used across all major operating systems, programming languages, and scientific analysis software suites, greatly 
expanding interoperability and utility.

The data deposit should contain sufficient documentation to facilitate discovery and use by researchers 
outside of the project. Data contributors can take steps to increase data discoverability by providing complete 
project metadata. Using persistent identifiers (PIDs) to create explicit links between the dataset and related 
publications via digital object identifiers (DOI), individuals with Open Researcher and Contributor IDs 
(ORCID), organizations with Research Organization Registry (ROR) identifiers for institutional affiliations, and 
funders with CrossRef Funder identifiers for funding sources creates strong semantic links that improve search 
results and allow for automated indexing of relationships. Our approach to project-level metadata is based on 
the DataCite Metadata Schema29, and includes fields recommended by the Generalist Repository Ecosystem 
Initiative30 to maximize data discoverability and metadata interoperability. Much of this metadata, if not more, 
will be captured upon deposit in scientific repositories.

Researchers must be able to interpret the data in order to use it appropriately. To that end, it is important that 
data contributors include a written description of the data, its intended use, and known limitations (e.g., expla-
nations of missing values or fields) in the project metadata, as well as a data dictionary describing the fields of 
the flat data file. By using a data standard, data producers can quickly create a data dictionary. To ensure this data 
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parasite 1
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Fig. 1 Examples of one-to-one, many-to-one, and one-to-many relationships between fields of the minimum 
data standard, including commonly-encountered “special cases.” In a simple study design (top row), one sample 
corresponds to one animal, one sampling method, one parasite test, and potentially, one parasite detection. 
However, in other studies, multiple samples may be collected from the same animal (e.g., blood and wing punch 
collected from a bat), a single sample may be tested multiple times (e.g., the blood sample is screened for both 
coronaviruses and paramyxoviruses), or multiple parasites may be detected in one sample (e.g., the blood 
sample tests positive for a coronavirus and a paramyxovirus) (second row). Nested detections (third row) can 
occur when a parasite associated with one animal itself harbors another parasite (e.g., a flea is sampled from 
a rat, and the flea also tests positive for Yersinia pestis). Researchers may also combine samples from multiple 
animals into a single pooled sample (bottom row). In some cases, the associated animals are “unidentified” (e.g., 
a pooled sample of 30 mosquitoes). However, if a researcher does have data on each animal linked to a pooled 
sample, they can provide it in an additional file.
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standard remains interoperable with other data initiatives, we provide cross-mapping of the fields to the Darwin 
Core terms51 used for biodiversity observations, as well as links to different GenBank data products through 
unique identifiers. These fields are validated automatically when using the Wildlife Disease Data Standard JSON 
Schema through the wddsWizard R package. For further specificity, data producers may use terms from ontolo-
gies or controlled vocabularies when referring to specific measurements or tests

To ensure that data producers get credit for their work, data should be deposited into archival platforms that 
can provide a PID like a DOI, capture project metadata, and surface relevant works via search. Commonly used 
archives include Zenodo, OSF.io, DataDryad, and figshare. Some journals have agreements with archival data 
platforms that can waive the costs of archiving data, in addition to creating a semantic link between the DOI of 
the publication and the DOI of the dataset.

Data producers are encouraged to deposit material in multiple archives, including discipline-specific 
and generalist repositories. Publishing the flat files on multiple data platforms has a series of advantages. 
First, increasing the number of copies decreases dependency on a single platform, increases data longevity, 
and reduces the risk of deletion or modification. Second, having data on multiple platforms (and especially 
discipline-specific platforms) maximizes the chances that they are discovered. Finally, for data contributors, 
depositing data in general-purpose repositories also offers additional flexibility in terms of archiving record- or 
project-level information that is not in the scope of our data standard. For example, the ImmPORT platform 
uses a data model that allows researchers to provide direct links to NIH resources, detailed lists of personnel 
involved in a project, and direct connections to relevant biomedical ontologies52.

Discussion
Here, we propose a data standard for wildlife infectious disease studies. With minimal modifications, the same 
template could also be used for related types of data, such as records of plant pathogens, or infections in captive 
animal populations such as zoos and wildlife sanctuaries. However, other types of spatiotemporal disease data 
may already have associated best practices and dedicated or otherwise well-suited repositories. For example, 
disaggregated but carefully de-identified human infectious disease data can be shared in epidemic settings on 
the Global.health platform53; host, vector, and parasite occurrence data can also all be documented in Darwin 
Core format and shared in GBIF54–56.

We encourage researchers to adopt this minimum standard, and to deposit their data in generalist repos-
itories (e.g., Figshare, Data Dryad, or Zenodo) and specialist platforms (e.g., PHAROS), so that their data are 
findable, accessible, interoperable, and reusable (FAIR) by other scientists16. Doing so will help researchers meet 
the minimum requirements for data sharing now adopted by most journals and scientific funders. Researchers 
could even consider sharing data before or independent of manuscript publication, especially in cases where 
negative data might not be publishable, or where timely sharing of findings might be particularly relevant to 
public health or conservation. Progress toward open, timely data sharing will make wildlife disease research a 
richer and more rigorous field, leading to better insights about emerging threats to human and animal health.

Data availability
The example dataset and blank templates are available from GitHub at github.com/viralemergence/wdds.

Code availability
An R package to validate data against the data standard described in this paper is available from GitHub at github.
com/viralemergence/wddsWizard.
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