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SUMMARY 21 

SARS-CoV-2 superspreading occurs when transmission is highly efficient and/or an 22 

individual infects many others, contributing to rapid spread. To better quantify heterogeneity in 23 

SARS-CoV-2 transmission, particularly superspreading, we performed a systematic review of 24 

transmission events with data on secondary attack rates or contact tracing of individual index 25 

cases published before September 2021, prior to emergence of variants of concern and 26 

widespread vaccination. We reviewed 592 distinct events and 9,883 index cases from 491 27 

papers. Meta-analysis of secondary attack rates identified substantial heterogeneity across 12 28 

chosen event types/settings, with the highest transmission (25–35%) in co-living situations 29 

including households, nursing homes, and other congregate housing. Among index cases, 67% 30 

produced zero secondary cases and only 3% (287) infected >5 secondary cases 31 

(“superspreaders”). Index case demographic data was limited, with only 55% of individuals 32 

reporting age, sex, symptoms, real-time PCR cycle threshold values, or total contacts. With the 33 

data available, we identified a higher percentage of superspreaders among symptomatic 34 

individuals, individuals aged 49–64 years, and individuals with over 100 total contacts. 35 

Addressing gaps in reporting on transmission events and contact tracing in the literature is 36 

needed to properly explain heterogeneity in transmission and facilitate control efforts for SARS-37 

CoV-2 and other infections. 38 
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INTRODUCTION 43 

Following the emergence of SARS-CoV-2 in late 2019, the virus spread worldwide, 44 

resulting in the coronavirus disease (COVID-19) pandemic [1]. Understanding drivers of SARS-45 

CoV-2 transmission was crucial for formulating control measures, especially prior to the 46 

development of vaccines. Early in the pandemic, heterogeneity in transmission, particularly 47 

superspreading, was investigated because of its ability to cause large outbreaks [2–4].  48 

Superspreading involves two distinct but non-mutually exclusive phenomena: a setting where 49 

many people become infected due to an environment conducive to transmission (e.g., crowded 50 

indoor settings), and individuals who are outliers in the number of secondary cases they infect, 51 

due to biological heterogeneity in infectiousness and/or engagement in high-risk behaviors [5,6]. 52 

Superspreading has been observed in several other viral infections, including SARS-CoV, 53 

MERS-CoV, Nipah, Ebola, and measles [7–12]. With SARS-CoV-2, both forms of 54 

superspreading garnered considerable attention in the literature. For example, over 140 55 

individuals were infected during a Christmas event in Belgium in December 2020, causing over 56 

26 deaths [13]. Likewise, one individual infected dozens of people during a choir practice in 57 

Washington, USA, in March 2020 [14]. 58 

Because superspreading events contributed substantially to local and global SARS-CoV-59 

2 transmission [15], public health interventions were enacted to reduce their risk of occurrence. 60 

These interventions included school closures, limitations on indoor gatherings, and restrictions 61 

on visiting hospitalized patients or long-term care facilities. Many of these policies were based 62 

on limited data from early in the pandemic. Moreover, published systematic reviews and 63 

modeling of SARS-CoV-2 superspreading from this period were limited in scope and did little to 64 

disaggregate this phenomenon into the distinct contributions of environment and individual 65 
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characteristics. For example, studies of setting-specific transmission rates have focused on 66 

household and healthcare transmission or geographic and temporal trends [2,16–19], but did not 67 

address transmission heterogeneity across other social settings. Previous meta-analyses of 68 

individual-level superspreading included only a small number of papers (<26) that calculated 69 

overdispersion in transmission, missing the majority of published transmission trees and 70 

capturing data primarily from Asia [7,8]. Early investigations of individual-level characteristics 71 

related to superspreading were also limited by incomplete contact tracing [20,21] and a focus on 72 

clinical over demographic characteristics [20]. A more complete summary of superspreading is 73 

needed to understand the scale of transmission heterogeneity across settings and identify causes 74 

of individual heterogeneity. 75 

The objective of this review was to summarize global heterogeneity in SARS-CoV-2 76 

transmission events prior to widespread vaccination and the role of environmental and individual 77 

factors in superspreading. Specifically, this review aimed to identify: 1) the amount of variation 78 

in attack rates across studies and events, 2) which settings had the highest attack rates, 3) the 79 

individual offspring distribution for SARS-CoV-2, and 4) the characteristics of superspreading 80 

individuals. 81 

 82 

METHODS 83 

Literature search and data extraction  84 

We conducted this systematic review and meta-analysis according to the Preferred 85 

Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 statement [22]; see 86 

Appendix 1 for the PRISMA checklist. We included all studies of SARS-CoV-2 that contained 87 

data on: 1) transmission chains; 2) numbers of index cases, contacts, and infected contacts; 3) 88 
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numbers of index cases and infected contacts; or 4) secondary attack rates, i.e., number of 89 

infected contacts divided by number of contacts. We excluded studies that were not about 90 

humans. A clinical informationist searched PubMed, the WHO COVID database, the I Love 91 

Evidence COVID database, and Embase on 9 September 2021. No restrictions on language or 92 

start date were applied. Results were imported into EndNote X9 (Clarivate, London, UK) where 93 

duplicates with exact matches in the author, year, and title fields were removed. Team members 94 

screened titles and abstracts and performed full text review in Covidence (Veritas Health 95 

Innovation, Melbourne, Australia). 96 

We extracted data using a pre-designed, study-specific spreadsheet, collecting 97 

information on paper metadata and target variables for two outcomes: transmission events and 98 

individual index cases (Table 1). Events were defined as discrete transmission events where 99 

secondary attack rates for defined groups of people could be calculated as the number of infected 100 

cases divided by the total number of exposed individuals. This definition of secondary attack 101 

rates includes both clinical and subclinical infections in some studies. Due to the limited details 102 

published in the literature, we did not attempt to distinguish events associated with individual 103 

transmission chains from a single source (potentially with confirmatory sequencing data) from 104 

events that aggregated multiple transmission chains together. In lieu of this distinction, we 105 

separated events into different settings and by the duration of the event (i.e., exposure window, 106 

in days) reported in each paper. Twelve event types were chosen to classify each event/setting 107 

described in a paper (Table 2). To describe individual contributions to transmission, we extracted 108 

data on index cases for whom contacts were followed to identify secondary transmission. We 109 

only entered data from papers where it was clear from the methods that contact tracing was done 110 

for at least one week to capture secondary transmission from individual index cases. For studies 111 
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that did not report SARS-CoV-2 variants, we imputed the dominant variant from CoVariants 112 

data for the country and time period of interest [23]. See the Supplementary Material for 113 

additional details on the identification of papers, data extraction (Supplementary Tables S2–S3), 114 

and assessment of study bias. 115 

 116 

Statistical analyses 117 

To characterize the type and quality of information that we were able to extract about 118 

transmission events, we performed a descriptive analysis of event data including the number of 119 

each chosen event type, starting year of the data, focal countries, diagnostic methods, event 120 

duration, and level of missingness for all variables. Because not all individuals potentially 121 

exposed during an event were tested in each study, secondary attack rates for individual events 122 

were calculated separately using the total number of exposed individuals or the total number 123 

tested. If either of these quantities were missing, the value was imputed based on the value 124 

present (i.e., assuming the number tested was equal to the number exposed or vice versa). 125 

Sensitivity of results to this choice of denominator was assessed in the meta-analysis of events 126 

(see Supplementary Material). 127 

To describe the amount of variation in attack rates across studies and events and to 128 

identify which settings had the highest SARS-CoV-2 attack rates, a meta-analysis was performed 129 

on secondary attack rates across event types using the metafor package in R v4.2.2 [24]. We 130 

converted secondary attack rates for each event to Freeman-Tukey double arcsine transformed 131 

proportions [25] and calculated the sampling variance. We fit a hierarchical model with a nested 132 

random effect for event within study and no fixed effects to assess the heterogeneity in 133 

secondary attack rates attributable to these factors using restricted maximum likelihood. We 134 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 12, 2024. ; https://doi.org/10.1101/2024.01.25.24301669doi: medRxiv preprint 

https://doi.org/10.1101/2024.01.25.24301669
http://creativecommons.org/licenses/by/4.0/


calculated I2, the percentage of variance attributable to true heterogeneity, for each random effect 135 

[26] and used Cochran’s Q test to test if estimated heterogeneity in secondary attack rates was 136 

greater than expected from the sampling error alone. We then fit additional mixed-effects models 137 

that included the same random effects but also event type and event duration as fixed effects. 138 

Cochran’s Q was performed on these model to assess whether residual heterogeneity in 139 

secondary attack rates was greater than expected after accounting for sampling error and fixed 140 

effects. Fitted coefficients and 95% confidence intervals (CI) from meta-analysis were back-141 

transformed to proportions using the geometric mean of the tested individuals across all studies 142 

in each event type [25]. These back-transformed proportions are referred to as “meta-analysis 143 

estimated secondary attack rates” or “meta-analysis estimated mean attack rates” in the text and 144 

figures. For comparison with meta-analysis estimates, we also calculated the median secondary 145 

attack rate and interquartile range across events for each chosen event type. 146 

To characterize the individual offspring distribution for SARS-CoV-2, the overall 147 

distribution of secondary cases generated by each identified index cases was fit to a negative 148 

binomial distribution, following Lloyd-Smith et al. [11]. We estimated the percentile of index 149 

cases producing 80% of all secondary infections using a formula and code from Endo et al. [27].  150 

Our last aim for the study was to identify recognizable characteristics of superspreading 151 

individuals. Based on the availability of demographic characteristics and other features of index 152 

cases in the literature, we examined differences in distributions of secondary cases produced by 153 

index cases according to sex, presence/absence of symptoms, age, real-time PCR cycle threshold 154 

(Ct) value, and the total number of contacts each index case had. Additional statistical tests 155 

compared these listed factors between “superspreaders” (index cases with >5 secondary cases, 156 

following Adam et al. [3]) and “non-superspreaders” (index cases with ≤5 secondary cases): Chi-157 
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square tests of proportions to compare the proportion of women, the proportion of symptomatic 158 

cases, and proportion of adults or across age bins; Student’s t-tests to compare mean age and Ct 159 

value; and a Kruskal-Wallis test to compare the highly skewed distributions of total contacts 160 

among index cases. All statistical tests used α = 0.05 as the statistical significance threshold to 161 

identify whether superspreaders were overrepresented among certain demographic groups. 162 

 163 

RESULTS 164 

Study selection 165 

We identified 13,632 articles from the four databases searched, representing 8,339 unique 166 

references (Figure 1). Of these, we excluded 7,358 records during the abstract review. For the 167 

981 records that underwent full text review, we excluded 384 records that were reviews or letters 168 

to the editor without data, contained no data on our variables of interest, or were duplicate 169 

records (preprints, true duplicates, or duplicated datasets). A total of 598 papers were assessed 170 

for eligibility for data extraction and a further 107 papers were excluded that did not contain 171 

sufficient data on our outcome variables of interest or were duplicates (Figure 1). We extracted 172 

data from 491 studies: 232 studies provided event data only, 195 studies provided individual 173 

index case data only, and 64 studies provided both data types, yielding evidence from 592 174 

distinct events and 9,883 index cases. The 491 analyzed studies were from 67 countries, with 175 

most from China (26%), the USA (17%), and South Korea (5%) (Supplementary Figure S1A). 176 

Although our search included two-thirds of 2021, nearly all studies covered data from 2020 177 

(94% of events, 99% of index case symptom onset or positive test dates). 178 

 179 

Characteristics of events 180 
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Descriptive analyses were used to characterize the type and quality of information about 181 

transmission events present in the literature. Event data were most commonly from the USA 182 

(27%), China (15%), the UK (8%), and South Korea (6%) (Supplementary Figure S1B). 183 

Published papers were missing information on many variables that we aimed to extract about 184 

events (Supplementary Figure S2A). Of the 46 target data fields from articles about events, 17 185 

had high data completeness (>80%), including those for the study and event metadata, event 186 

description, time period of the event (describing the start and end dates of exposure), location of 187 

the event (country and state/province or city), and number of exposed individuals and secondary 188 

cases (Supplementary Table S3). Event durations were highly skewed, with a median duration of 189 

34 days and an interquartile range of 13–60 days (Supplementary Figure S3). Studies used a 190 

variety of diagnostic methods to identify SARS-CoV-2 cases, though PCR was the dominant 191 

method (Supplementary Figure S4A). Other approaches included antigen tests, retrospective case 192 

identification by serology, diagnosis via symptoms or chest tomography in early papers, or a 193 

mixture of approaches. Because most studies covered events prior to emergence of variants, most 194 

events (N = 532, 90%) likely involved only wild-type/ancestral SARS-CoV-2, while 14 events 195 

involved Alpha, six Beta, eight Delta, and 31 likely included a mixture of variants (e.g., during 196 

periods of variant emergence and replacement of the dominant variant). 197 

 198 

Heterogeneity in event secondary attack rates 199 

Meta-analysis of secondary attack rates was performed to describe variation in attack 200 

rates across studies and events and to identify which settings had the highest attack rates. 201 

Secondary attack rates varied substantially within and among event types (Figure 2). 202 

Interquartile ranges of attack rates were lower for transport (0–11%), hospital/healthcare (1–203 
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20%), and mixed events (3–12%), whereas congregate housing (9–63%), households (15–60%), 204 

social venues (8–53%), and cruise ships (9–41%) had higher heterogeneity, with some events 205 

reporting attack rates of 100% (Table 2). Meta-analysis of secondary attack rates including a 206 

nested random effect for event within study detected significant heterogeneity in secondary 207 

attack rates (I2 = 99%, Cochran’s QE,591 = 141,765, P < 0.0001). The random effect for study 208 

accounted for most of the heterogeneity (I2
study = 58%), followed by event nested within study 209 

(I2
event = 41%). Addition of a fixed effect for event type to the model indicated that secondary 210 

attack rates varied significantly across event types (Cochran’s QM,11 = 122, P < 0.0001). Meta-211 

analysis estimated mean attack rates were lowest for shopping (0%), hospitals and healthcare 212 

(6%), transportation other than cruise ships (9%), and schools (11%) (Figure 2). Comparatively, 213 

estimated mean attack rates were two to three times higher (25–35%) in nursing homes, cruise 214 

ships, households, and other congregate housing settings (e.g., homeless shelters, prisons). 215 

Models including event duration and an interaction term between event type and event duration 216 

as additional fixed effects found similar levels of heterogeneity (Cochran’s QM,23 = 135, P < 217 

0.0001) and identified a common trend of decreasing attack rates with longer event durations 218 

across different event types, with the exception of cruise ships and shopping (Supplementary 219 

Figure S5). 220 

 221 

Characteristics of individual index cases 222 

Descriptive analyses were also used to characterize the type and quality of information 223 

about individual index cases found in published studies. Individual index case data with 224 

offspring distributions overwhelmingly came from China (36%) and India (35%) 225 

(Supplementary Figure S1C). Index case data exhibited higher missingness compared to events 226 
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(Supplementary Figure S2B): of the 74 data fields that we extracted for individual index cases, 227 

the highest completeness (>60%) was seen for study and index case numbers, location of the 228 

index case (country and state/province or city), total number of contacts infected, method of 229 

testing for the index case and contacts, and SARS-CoV-2 variant (Supplementary Table S4). We 230 

identified five key characteristics of index cases that could be related to superspreading, though 231 

most of these were also missing from the published literature: 46% of cases included data on age, 232 

48% on sex, 10% on presence/absence of symptoms, 6% on total number of contacts, and only 233 

2% had Ct values reported. A total of 5,437 index cases (55%) contained data on at least one of 234 

these five variables. Diagnostic methods for identification of individual index cases and their 235 

associated secondary cases were only reported in 61% of cases, with PCR as the primary 236 

approach (Supplementary Figure S4B,C). The majority of index cases (N = 8,565, 87%) were 237 

assumed to be infected with wild-type SARS-CoV-2 based on location and timing of the study or 238 

test confirmation date. A mixture of variants was likely in 1,282 cases (13%), while one index 239 

case was reported with Alpha, two Beta, 11 Delta, and 22 Epsilon. 240 

 241 

Heterogeneity in transmission across individual index cases 242 

A third goal of this analysis was to describe the individual offspring distribution for 243 

SARS-CoV-2 based on reported index cases. Most index cases (67%) did not transmit SARS-244 

CoV-2 to another person and 17% transmitted to only one other individual (Figure 3). There 245 

were 287 “superspreaders” with >5 contacts infected, representing 3% of index cases from the 246 

included studies. The distribution of secondary infections fit a negative binomial distribution 247 

with a mean of 0.88 (CI: 0.84–0.92) and a dispersion parameter k of 0.27 (CI: 0.25–0.28). Using 248 

the formula from Endo et al. [27] and the estimated mean and k for the negative binomial 249 
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distribution, the top 17% most infectious index cases would be expected to generate 80% of all 250 

secondary cases. 251 

 252 

Qualities of superspreaders 253 

Finally, our analysis sought to identify qualities of index cases that were associated with 254 

being a superspreader (index cases with >5 secondary cases) compared to non-superspreaders 255 

(Table 3). The proportion of index cases with reported symptoms was higher in superspreaders 256 

(89%) than non-superspreaders (76%; χ2
1 = 5.4, P = 0.02). Superspreaders had more than two 257 

times the mean number of contacts (79) compared to non-superspreaders (36; χ2
1 = 56.6, P < 258 

0.0001). Adults also made up a greater proportion of superspreaders (99%) than non-259 

superspreaders (84%; χ2
1 = 14.1, P < 0.0001). Index cases over 25 years of age were 260 

overrepresented among superspreaders and no superspreaders 12 years of age and under were 261 

reported (Figure 4). When age was analyzed as a continuous variable, the number of contacts 262 

infected and the frequency of superspreaders increased with age, up to around 60 years of age 263 

(Supplementary Figure S6). No significant differences by sex or Ct values were observed (Table 264 

3). However, two adult male index cases produced the highest number of secondary infections, 265 

infecting 81 of their 104 contacts and 101 of their 300 contacts, respectively. The former was a 266 

lecturer in Tonghua, China [28] and the latter a fitness instructor in Hong Kong, China [29]. 267 

 Symptomatic cases had a higher mean number of infected contacts (2.1) compared to 268 

asymptomatic cases (0.7) (Table 4). The dispersion parameter k was higher for symptomatic 269 

cases than asymptomatic cases (0.43 vs. 0.11), indicating lower variance in the number of 270 

secondary cases produced by a symptomatic case. This variance is exemplified by the lower 271 

percentage of non-transmitters (44%) and higher percentage of superspreaders (9%) among 272 
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symptomatic cases compared to asymptomatic cases (79% and 4%, respectively). Compared to 273 

other age groups, individuals aged 49–64 years had the highest mean number of infected contacts 274 

(1.2), lower variance (higher k, 0.43), and a higher percentage of superspreaders (3%). Data on 275 

total reported contacts showed a different pattern, with a higher mean number of infected 276 

contacts (8) as well as higher variance (lower k, 0.28) among index cases with >100 total 277 

contacts compared to individuals with fewer contacts. This was accompanied by a substantially 278 

higher percentage of superspreaders (28%) among individuals with >100 total contacts compared 279 

to individuals with 11–100 contacts (19%) or those with 0–10 contacts (2%). Considering only 280 

symptomatic adults with a known number of total contacts (N = 129), the percentage of 281 

superspreaders was consistently smaller as the number of contacts decreased: 26% (5/19) for 282 

individuals with over 100 contacts, 24% (8/34) for those with 21–100 contacts, 8% (2/24) for 283 

those with 11–20 contacts, and 0% for those with 10 or fewer contacts (0/52). 284 

 285 

DISCUSSION 286 

In this systematic review and meta-analysis, we aimed to characterize the heterogenetity 287 

in SARS-CoV-2 transmission among different settings and across individuals that has been 288 

reported in published studies. Regarding transmission settings, our meta-analysis identified 289 

substantial heterogeneity in attack rates across 12 chosen event types, with higher mean attack 290 

rates in nursing homes, cruise ships, households, and other congregate housing settings 291 

compared to shopping, hospitals and healthcare, other transportation, and schools. Regarding 292 

individual transmission heterogeneity, we found that most cases did not transmit to another 293 

person and that a small proportion (3%) of individuals were superspreaders (causing >5 294 

secondary cases). While data on the demographics of index cases were not consistently reported 295 
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in the literature, the data that were available indicate that superspreaders were more likely to be 296 

symptomatic than non-superspreaders, more likely to be adults (with particular 297 

overrepresentation in the 49-64 age group), and had more total contacts. 298 

Our ranking of event types by attack rate reinforces our existing understanding of SARS-299 

CoV-2, that transmission is more likely in dense indoor gatherings or close and frequent contact 300 

among co-living individuals, especially in households [15]. Published meta-analyses covering 301 

the early pandemic (pre-2021) estimated pooled household secondary attack rates of 17–21% 302 

[16,18,19,30,31], with household attack rates consistently higher than those in healthcare, work, 303 

or travel settings [16,19]. Our pooled household secondary attack rate over 115 events was 29%, 304 

higher than these earlier studies but similar to the 31% estimate from Madewell et al. [18] for 305 

studies covering July 2020 to March 2021. The higher value may be explained by the emergence 306 

of the Alpha and Delta variants and the larger second and third waves of the pandemic occurring 307 

in some countries during 2021. 308 

The literature on SARS-CoV-2 transmission events rarely reported on the 309 

epidemiological context and characteristics of different populations exposed, which could help 310 

explain variation in attack rates. While the timing and location of events may help to explain 311 

some of the variation within event types, the remaining variation could depend on event duration 312 

(as shown by Supplementary Figure S5) and time spent indoors, types of activities occurring 313 

(e.g., exercise, singing) [32,33], and the age groups present at the event. For example, the age of 314 

individuals interacting in these contexts appears to also influence propensity for transmission, as 315 

evidenced by the large difference in attack rates within schools versus nursing homes. Children 316 

and adolescents are frequently found to have lower household infection risk than working age 317 

adults [18,19,21,31] and older adults have higher risk of infection and severe disease than 318 
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younger ages [18,31]. In studies that assessed transmission among school-aged children, 319 

teachers, and their household contacts, attack rates among children at school were lower than 320 

among teachers and the household contacts of children and teachers [34,35]. Variation in the 321 

stringency of interventions (e.g. masking requirements, physical distancing, lockdowns) across 322 

countries and over time also could have affected attack rates across different settings. As shown 323 

in Supplementary Figure S6 comparing attack rates for events in the United States and China, 324 

two locations where differing stringency of control measures were implemented, meta-analysis 325 

estimated attack rates were lower across event types for China, though the largest differences 326 

between countries were observed for transmission in social venues and mixed settings. 327 

Environmental factors such as humidity, room size, ventilation, and air flow [5] could also 328 

augment transmission across settings but these were very rarely reported in the literature. 329 

Analysis of index case demographics also highlighted age as an important factor in 330 

SARS-CoV-2 transmission and superspreading. While age was only reported in 46% of index 331 

cases, nearly all superspreading individuals were adults and there were no reported 332 

superspreaders 12 years of age and under, which is consistent with other reviews of SARS-CoV-333 

2 superspreading [36]. Individual and age-related heterogeneity in the amount and assortative 334 

patterns of social contacts likely influence superspreading as well. Evidence supports lower 335 

transmission from children compared to adults, but effect sizes have been small in some studies 336 

[16,21,30,37]. Remaining heterogeneity in individual infectiousness may derive from differences 337 

in genetic susceptibility [38,39], body size (accounting for age) [40], baseline lung volume and 338 

function [41], immunocompromising disease or co-infection [42,43], or the loudness and wetness 339 

of speech [32]. The relative importance of these characteristics to SARS-CoV-2 transmission at a 340 

population level are unknown and may be challenging to measure and report at scale. Future 341 
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work on COVID-19 and other respiratory diseases should address these hypotheses. 342 

 Our results indicate substantial heterogeneity in transmission from individuals, observed 343 

in other studies [37,41,44], and evidenced by the skewed degree distribution for index cases and 344 

the estimate of the dispersion parameter k. Our estimate of k (0.27, CI: 0.25–0.28) is within the 345 

range of previous estimates for a similar period of the pandemic, with values frequently in the 346 

range of 0.1–0.7 [3,7,8,27,45]. Caution should be taken when interpreting k values, which are 347 

sensitive to changes in the tails of a distribution, such as superspreaders or individuals that cause 348 

no secondary infections. Without robust isolated case finding and follow-up, contact tracing 349 

efforts may undercount the number of zeroes, biasing k upwards [46,47]. Alternatively, 350 

backwards contact tracing may be susceptible to attachment bias, where infections are 351 

preferentially attributed to a known superspreader rather than a separate (known or unknown) 352 

transmitter [47]. Additionally, there may be publication bias or more complete contact tracing for 353 

large outbreaks with an individual superspreader or with high attack rates [15,47]. These effects 354 

would bias k downwards and inflate meta-analysis estimated attack rates across event types. It 355 

may also lead to the overestimation of the proportion of index cases that are superspreaders. 356 

Without knowledge of the relative impact of these biases, it is challenging to interpret whether k 357 

is a true representation of SARS-CoV-2 transmission heterogeneity. To improve inference on 358 

individual heterogeneity of transmission from outbreak investigations, we recommend that 359 

contact tracing efforts use both backward and forward contact tracing [15,21,48], with sufficient 360 

follow-up time to identify non-infecting individuals, and complete reporting of contact tracing 361 

efforts (e.g., anonymized line lists with infector-infectee and other demographic information). 362 

While our systematic review is the most comprehensive assessment of SARS-CoV-2 363 

superspreading to date, a principal limitation of our analysis was the incomplete data available in 364 
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the published literature. Beyond information provided about the timing and location of events, 365 

very few studies reported any demographics of the exposed individuals, their COVID-19 366 

vaccination status (once introduced) or history of prior SARS-CoV-2 infection, or the density 367 

and amount of time indoors. For individual index cases, some studies reported demographic 368 

information and the presence/absence of symptoms, but this atypical. We also experienced 369 

difficulty with deducing whether contact tracing was performed for all reported cases in 370 

transmission chains, especially for terminal nodes. It was not always clear whether cases did not 371 

transmit or whether data were missing due to lack of contact tracing, so these cases had to be 372 

omitted from the analysis. Testing and tracing policies likely differed between countries, which 373 

would affect the collection of index cases that ended up in our review. For this reason, data on 374 

index cases are missing from many countries and transmission chains from some countries may 375 

be less complete than others. Similarly, the effectiveness of testing and tracing policies varies 376 

across settings (e.g., easier in households than large social gatherings), which affects the 377 

completeness of transmission chains and likely which outbreaks get published. There were 378 

numerous papers that we reviewed with transmission chains that were simply too incomplete or 379 

uncertain for us to extract index case data from them. However, without reporting of testing and 380 

tracing policies or the effectiveness of tracing efforts within each paper, or a comprehensive 381 

database or systematic review of this information in the literature, these remain as uncertainties 382 

that must be addressed with better data. 383 

Another limitation of this review was the wide variation in case detection methods across 384 

studies. Not all studies reported the total number of contacts that were tested from events and we 385 

assumed in the missing cases that the number tested was the same as number exposed. Our 386 

sensitivity analysis, using total exposed contacts for all events as the denominator for attack rates 387 
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instead of total tested contacts, showed that estimated mean attack rates were consistently lower 388 

across event types but the ranking of event types was relatively stable (Supplementary Figure 389 

S7). However, some studies reported only symptomatic cases or only performed diagnostic tests 390 

(e.g., PCR) on symptomatic individuals, thereby missing all reporting of asymptomatic or 391 

pausisymptomatic individuals and any secondary cases produced. These missing contacts may be 392 

undercounted for both the numerator (contacts that are infected but asymptomatic) and the 393 

denominator (including contacts that are asymptomatic and uninfected), which could move 394 

attack rates in either direction. Limiting testing to symptomatic contacts has a more predictable 395 

effect on individual case degree distributions, reducing the apparent proportion of individuals 396 

that transmit and the total secondary cases among individuals that do transmit. Case 397 

ascertainment also likely varied by event setting, contributing additional uncertainty in estimated 398 

attack rates. For example, performing contact tracing and testing a greater number of contacts 399 

was probably easier in settings with consistent or recorded populations like households, schools, 400 

and nursing homes than in large social venues like nightclubs. Differences in estimated attack 401 

rates by event type may be less drastic than we observed if case ascertainment could be properly 402 

addressed with additional ground truth data, i.e., community asymptomatic testing. 403 

Since case detection depends partly on presence of symptoms, some care should be taken 404 

in interpreting the finding that superspreaders were more likely to have symptoms than non-405 

superspreaders. We performed an additional analysis on the presence of symptoms across 406 

different demographic factors reported in papers (see Supplementary Table S6). The only trend 407 

we saw was for age, where the presence of symptoms was somewhat higher for older adults (49 408 

and older). This may have slightly skewed detection of superspreaders among older adults. 409 

However, there were still hundreds of children with symptoms reviewed as index cases, so there 410 
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were ample opportunities for them to be identified as superspreaders. Therefore, we remain 411 

confident in our findings about the rarity of superspreaders among children. However, data from 412 

human challenge trials with SARS-CoV-2 have shown that individuals with the highest viral 413 

emissions did not have the most severe symptoms, but these super-emitters were also not 414 

asymptomatic [41]. These super-emitters, and the majority of superspreaders reported in the 415 

literature, tend to have mild to moderate symptoms [36,41]. While the importance of 416 

asymptomatic transmission of SARS-CoV-2 should be acknowledged, numerous studies have 417 

shown that transmission is more likely from symptomatic individuals compared to completely 418 

asymptomatic individuals [18,21,49–51]. However, additional studies that overcome issues of 419 

case ascertainment should be done to assess the role of asymptomatic individuals in SARS-CoV-420 

2 superspreading. 421 

To improve the field and our understanding of the drivers of heterogeneity in 422 

transmission, we propose standard and consistent reporting on transmission for all outbreaks, as 423 

feasible, including details on the epidemiological context of transmission events and complete 424 

line lists of cases following contact tracing, with information on case demographics (age, sex, 425 

occupation), diagnosis (presence/absence of symptoms, symptom description, test date and 426 

results), the duration of contact tracing, and the total number of contacts and the demographic 427 

information for contacts (see Appendix 2). Details on the duration of contact tracing should 428 

include the entire time period of case finding and how long cases were followed to detect any 429 

secondary cases. We recognize the challenge of collecting, storing, and sharing identifiable data 430 

from outbreak investigations while continuing to assure confidentiality and improve trust in the 431 

health system. However, developing such a reporting system should be a priority for public 432 

health as the information has important inplications for reducing the spread of infectious 433 
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pathogens. 434 

Our comprehensive review found substantial heterogeneity in the transmission of SARS-435 

CoV-2, highlighting the settings and individual characteristics that might be most important to 436 

target for controlling superspreading. Secondary attack rates were highest in co-living situations 437 

where prolonged contact between individuals facilitated transmission, though there was 438 

substantial variation in attack rates within similar settings that remained unexplained and could 439 

be disentangled in future meta-analyses focused on the relative influence of built environment, 440 

social setting, and control measures on transmission. Given the moderate attack rates among 441 

minors in school and the rarity of children among superspreaders, interventions targeting these 442 

age groups may be less efficient at preventing SARS-CoV-2 superspreading and could be 443 

deprioritized in favor of interventions focusing on adults [21,52], especially those with 444 

symptoms and individuals with many daily close contacts. Acknowledging that there remain 445 

substantial gaps in data that limit our inference about superspreading, we advocate for consistent 446 

reporting on infectious disease outbreaks, ideally with detailed line lists, to facilitate knowledge 447 

synthesis about transmission patterns and superspreading in the future. Our review only covered 448 

the first phase of the pandemic, so important questions remain about whether patterns in attack 449 

rates and individual-level transmission still apply to later pandemic phases with significant 450 

population-level immunity. Enhanced reporting of outbreak data would expedite such future 451 

investigations. 452 

 453 
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 582 

Figure 1. PRISMA flow diagram for the systematic review and meta-analysis of SARS-CoV-2 583 

superspreading reported in the published literature. *There were 4 types of data that we sought to 584 

include: 1) transmission chain; 2) number of index cases, number of contacts, and number of 585 

infected contacts; 3) number of index cases and number of infected contacts; or 4) secondary 586 

attack rate. **Languages other than Spanish, Chinese, French, Turkish, German, and Portuguese. 587 
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 589 

Figure 2. SARS-CoV-2 secondary attack rates across 12 event types occurring between 590 

December 2019 and August 2021 reported in the literature across 592 events from 296 studies. 591 

Individual event data secondary attack rates are shown as grey bubbles, varying in size according 592 

to the total number of individuals exposed and tested from the event. Median secondary attack 593 

rate for each event type is shown as red circle with a line representing the interquartile range; 594 

values are in red on the right side of the figure. Meta-analysis estimated secondary attack rate for 595 

each event type is shown as an orange diamond with a line representing the estimated 95% 596 

confidence interval; values are in orange on the right side of the figure. Event types were ranked 597 

by increasing estimated mean secondary attack rate along the left axis. 598 
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600 

Figure 3. Distribution of secondary contacts infected by individual index cases (N = 9,591) for 601 

SARS-CoV-2 cases occurring between December 2019 and July 2021 reported in 259 studies. 602 

The black line shows the fit of the distribution to the expected negative binomial distribution. 603 

The inset shows a portion of the same data to highlight the distribution of superspreaders (index 604 

cases with >5 secondary cases). 605 
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607 

Figure 4. Comparison of the age distribution of superspreading index cases. The bars show the 608 

percentage of individuals within an age bin across superspreaders (index cases with >5 609 

secondary cases) and non-superspreaders. Numbers above the bars display the raw totals and 610 

percentages are shown in Table 3. 611 
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Table 1. Description of variables extracted from papers in the systematic review of SARS-CoV-613 

2 superspreading from December 2019 to July 2021. 614 

All papers 

• Title 

• Author(s) 

• Publication year, volume, and issue 

• Journal 

• Study location(s) 

o Country 

o Administrative unit(s): state/province, county, city 

• General study time period (e.g., start and end year/month of data collection) 

• Diagnostic testing method (PCR, serology, rapid antigen tests, symptom diagnosis, or mixed) 

• Variant name 

• Any reported prevention measures implemented in the event (e.g., masking, social distancing) 

• Number of exposed people with reported demographic characteristics (age, sex) and vaccination 

status 

Events 
• Type of event/setting (e.g. nursing home residents, household transmission study, or school) 

• Start and end date of event 

Index case 

• Demographic characteristics (age, sex, occupation) 

o Age group: ≤4 years, 5–12 years, 13–18 years, 19–24 years, 25–48 years, 49–64 years, ≥65 

years 

• Symptom onset (if applicable) and diagnosis dates 

• Symptoms (text descriptions or presence/absence) 

• Real-time PCR cycle threshold (Ct) value 
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• Specimen type 

• Clinical outcome (if applicable) 

• Setting of contact (e.g., work, social, and school) 
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Table 2. Types of SARS-CoV-2 secondary transmission events occurring between December 615 

2019 and August 2021 reported in the literature. Heterogeneity across event types was assessed 616 

based on the variance and interquartile range of secondary attack rates. Outlier events were 617 

identified for each event type as events that exceeded the estimated upper confidence interval of 618 

the meta-analysis estimated SAR for that event type or were greater than 50%. 619 

Event 

type 
Description of outbreak location N 

Minimum and 

maximum secondary 

attack rate 

1 
cruise ship or other densely populated watercraft (e.g., fishing vessel, 

aircraft carrier) 
16 0.02, 1 

2 transport mode other than ships (e.g., airplane, train, car) 20 0, 0.4 

3 

households, defined as co-living individuals or close contacts who 

always meet each other but possibly not living together (e.g., couples 

in romantic relationship) 

115 0, 1 

4 

hospital or healthcare facility, including patients, healthcare workers, 

and nursing home workers (if worker data was provided separately 

from nursing home residents) 

89 0, 0.46 

5 
workplace (e.g., office), including correctional officers and teachers 

and staff at schools 
51 0, 0.86 

6 school (data on students only) 32 0, 0.54 

7 public social venue (e.g., bar, concert, sporting event) 39 0, 1 

8 
private social event with members of multiple households (e.g., dinner 

with neighbors or extended family) 
12 0.01, 0.81 

9 shopping (activities in shops, markets, and department stores) 2 0, 0 

10 
nursing home or long-term care facility (residents only or residents 

and healthcare workers if not described separately in the paper) 
41 0, 0.84 
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11 
congregate housing other than nursing home or long-term care facility 

(e.g., homeless shelter, prison, summer camp) 
84 0, 1 

12 
mixed locations, included any combination of the above but not 

described separately in the paper 
91 0, 1 
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Table 3. Statistical comparisons of SARS-CoV-2 superspreaders to non-superspreaders based on 620 

features reported in the literature in 259 studies for cases occurring between December 2019 and 621 

July 2021. 622 

Feature of comparison 

Percentage or estimated 

mean for non-

superspreaders (total 

observations) 

Percentage or estimated mean 

for superspreaders (total 

observations) 

Statistical test 

results 

Female 40% (N = 4,543) 38% (N = 102) χ
2
1 = 0.09, P = 0.76 

Presence of symptoms 

(symptomatic) 
76% (N = 841) 89% (N = 70) χ

2
1 = 5.4, P = 0.02 

Age (in bins) 

      ≤4 years  

      5–12 years 

      13–18 years 

      19–24 years 

      25–48 years 

      49–64 years 

      ≥65 years 

(N = 4,391) 

3% 

7% 

8% 

11% 

49% 

16% 

6% 

(N = 91) 

0% 

0% 

2% 

9% 

53% 

27% 

9% 

χ
2
6 = 21.7, P = 0.001 

Age (≥18 years) 84% (N = 4,391) 99% (N = 91) χ
2
1 = 14.1, P < 0.0001 

Age (in years) 34.8 (N = 4,391) 43.8 (N = 91) t94.4 = 5.2, P < 0.0001 

Ct value 26.7 (N = 140) 24.8 (N = 10) t10.1 = -0.8, P = 0.45 

Total contacts 36 (N = 471) 79 (N = 59) χ
2
1 = 56.6, P < 0.0001 
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Table 4. Summary statistics describing the distribution of secondary cases among individual SARS-CoV-2 index cases occurring 623 

between December 2019 and July 2021 reported in the literature across 259 studies. 624 

Data 
Sample 

size 

Percentage with 

0 contacts 

infected 

Percentage with 

1–5 contacts 

infected 

Percentage with 

>5 contacts 

infected 

Maximum 

contacts 

infected 

Estimated mean 

contacts 

infected (95% 

CI) 

Estimated 

overdispersion, k 

(95% CI) 

All rows 9,591 67% 30% 3% 101 0.88 (0.84–0.92) 0.27 (0.25–0.28) 

Female 1,866 75% 22% 2% 30 0.63 (0.56–0.71) 0.18 (0.16–0.21) 

Male 2,779 74% 24% 2% 101 0.76 (0.69–0.84) 0.17 (0.15–0.19) 

Asymptomatic 214 79% 17% 4% 25 0.75 (0.43–1.08) 0.11 (0.07–0.16) 

Symptomatic 697 44% 47% 9% 81 2.06 (1.8–2.3) 0.43 (0.36–0.49) 

Age ≤4 years 143 90% 10% 0% 3 0.2 (0.07–0.32) 0.09 (0.01–0.17) 

Age 5–12 years 318 97% 3% 0% 3 
0.04 (0.006–

0.07) 
0.03 (–0.006–0.06) 

Age 13–18 years 333 94% 6% 1% 26 0.23 (0.08–0.38) 0.03 (0.01–0.05) 

Age 19–24 years 482 88% 10% 2% 19 0.38 (0.23–0.52) 0.06 (0.04–0.09) 

Age 25–48 years 2,195 76% 22% 2% 101 0.73 (0.65–0.82) 0.15 (0.13–0.17) 

Age 49–64 727 54% 43% 3% 35 1.16 (1.01–1.31) 0.43 (0.36–0.51) 

Age ≥65 years 284 58% 39% 3% 18 1 (0.79–1.21) 0.43 (0.3–0.57) 
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Ct value ≤25 67 42% 52% 6% 12 1.48 (1–1.96) 0.86 (0.31–1.42) 

Ct value >25 83 52% 41% 7% 26 1.45 (0.87–2.02) 0.4 (0.2–0.6) 

0–10 total contacts 281 49% 48% 2% 9 1.12 (0.93–1.31) 0.83 (0.53–1.14) 

11–100 total contacts 195 47% 34% 19% 39 3.1 (2.29–3.91) 0.32 (0.23–0.41) 

101–1000 total 

contacts 
54 35% 37% 28% 101 8 (3.92–12.07) 0.28 (0.16–0.4) 

 625 
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